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GALILEUS DECEPTUS, NON MINIME DECEPIT: A RE-APPRAISAL 
OF A COUNTER-ARGUMENT IN DIALOGO TO THE EXTRUSION 

EFFECT OF A ROTATING EARTH

PAOLO PALMIERI, University of Pittsburgh

1. Introduction

In a justly proud reminder to himself of his achievements on centrifugal force, Chris-
tiaan Huygens noted: “Galileus deceptus.… Neutonus applicuit feliciter ad motus 
ellipticos Planetarum. [H]inc quanti sit haec vis centrifugae cognitio apparet.”1 Though 
we may doubt whether Newton would have acknowledged his debt to Huygens, and 
wonder what Galileo might have replied, Huygens’s comment on Galileo’s deluding 
himself on centrifugal force seems, with few exceptions, to have found favour with 
twentieth-century historians and philosophers of science. It is unclear exactly to 
which passage of Galileo’s Dialogue concerning the two chief world systems Huy-
gens referred, so perhaps we have to take his comment as applicable to the whole 
argumentative strategy propounded by Galileo in the relevant sections of the Second 
Day of the Dialogue.2 As we shall see, Galileo basically wishes to prove that no 
matter how fast the Earth rotates daily on its polar axis, objects on its surface would 
never be extruded, i.e., they would never fly off toward the sky. That this should be 
the case was a rather common objection raised by anti-Copernicans at that time. 
Thus, in the late 1930s, Alexandre Koyré pointed out that “Galileo’s argument … 
is extremely subtle and seductive. Unfortunately it is incorrect; and what is worse, 
it is manifestly incorrect”.3 Others followed Huygens and Koyré in their negative 
assessment of Galileo’s argument.4 

About twenty years ago, however, David K. Hill went so far as to claim that 
Galileo crossed the line between honest argument and conscious deception, and 
that he knew full well that his counter-argument to the anti-Copernicans was seri-
ously flawed.5 Eventually, dissent in the debate was expressed by Stillman Drake in 
a rejoinder note to Hill.6 

In my view, the merit of Drake’s short rejoinder consists in having exposed the 
bundle of sometimes confused assumptions about the behaviour of bodies on a rotat-
ing Earth, on which the contemporary chorus of negative opinion was based. Drake 
argued that bodies on a Earth rotating faster and faster eventually reach the condition 
of weightlessness, after which they continue to orbit the Earth, remaining at rest 
with respect to a terrestrial observer. In other words, weightless bodies behave like 
geostationary satellites situated in close proximity of the surface of the Earth. Thus 
Drake thought he could rescue Galileo’s argument, on purely physical grounds, and 
salvage Galileo’s moral reputation. However, Drake somehow missed the point of 
Hill’s criticism of Galileo. For, as we shall see, Hill did not analyse Galileo’s counter-
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426 Paolo Palmieri

argument on the basis of classical (i.e., Newtonian) physics, as had been done by other 
scholars in the twentieth century. On the contrary, he pointed out a flaw in Galileo’s 
reasoning in the light of Galileo’s own physics of projectile motions, an internal 
and destructive objection that, according to Hill, Galileo himself could not have 
failed to raise. Hence Hill’s claim about Galileo’s morally deplorable presentation 
of a fundamentally flawed argument, a conscious act of deception.7 More recently, 
Maurice Finocchiaro analysed in great detail the logical structure of Galileo’s argu-
ment.8 Finocchiaro shifted the focus of the controversy, coming to the conclusion 
that “Galileo’s reflections on the nature of physical mathematical reasoning, when 
proper contextualized…, do not conflict with the definition [of Galileo’s mathemati-
cal reasoning] I extracted from his extrusion argument”.9 Finocchiaro’s definition of 
Galileo’s mathematical reasoning is as follows: “Physical-mathematical reasoning 
is reasoning about physical processes and phenomena such that various aspects of 
them are represented by mathematical entities, various mathematical conclusions 
are reached about these mathematical entities, and then these mathematical conclu-
sions are applied to the physical situation.”10 In the light of his analysis, Finocchiaro 
was able to dissolve some of the tensions in Galileo’s extrusion argument (although 
Finocchiaro stopped short of commenting on Hill’s conclusions).

Finocchiaro’s study suggested to me a possible new standpoint from which to 
tackle, once again, the issues raised by Galileo’s extrusion argument, namely, con-
textualization. The relevant context in which I will place Galileo’s argument is that 
of late sixteenth- and early seventeenth-century mathematical reasoning. 

In this paper, I will re-examine Galileo’s counter-argument to the extrusion effect 
in the context of his understanding of the “angle of contingence”, a dimension of 
Galileo’s reasoning that has so far been neglected in the debate. I will argue that it is 
precisely this dimension that further illuminates the counter-argument, thus resolving 
the apparently internal conflict in Galileo’s physics, and that Hill’s claim — when 
viewed from the standpoint of Galileo’s understanding of the “angle of contingence” 
— becomes untenable. Galileo went wrong (by the lights of subsequent developments 
in mathematical physics), but he did not consciously deceive. 

Section 2 will present a brief sketch of the history of interpretations of the extru-
sion effect. Section 3 will reconstruct Galileo’s views on the angle of contingence 
and similar parabolic trajectories. It will focus on a letter by Galileo on the angle of 
contingence and on related preparatory material for Two new sciences — two key 
documents that have so far been virtually ignored. Both these sections will emphasize 
the need for placing Galileo’s take on the anti-Copernican argument from extrusion 
in the context of a culture at the intersection of orality and writing. Section 4 will 
discuss in some detail Hill’s fascinating claim and Galileo’s counter-argument to the 
extrusion effect, on the basis of the results of the two preceding sections. I will finally 
draw some conclusions, and point to directions for future research in Section 5.
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2. An Historical Sketch of the Extrusion Effect

To prepare the reader, here I give a brief sketch of the history of interpretations of 
the extrusion effect, only underlining certain aspects that seem more relevant for the 
limited scope of my paper. A broader discussion of the history of the extrusion effect 
and of its role in the emergence of centrifugal force can be found in a recent study by 
Harald Siebert.11 In what follows, I will restrict my analysis mostly to textual aspects 
that I found problematic and especially significant. The extrusion effect of the diurnal 
rotation of the Earth is presented by Galileo in the Dialogue as follows.

Now there remains the objection based upon the experience of seeing that the 
speed of a whirling has a property of extruding and discarding material adher-
ing to the revolving frame. For that reason it has appeared to many, including 
Ptolemy, that if the Earth turned upon itself with great speed, rocks and animals 
would necessarily be thrown toward the stars, and buildings could not be attached 
to their foundations with cement so strong that they too would not suffer similar 
ruin.12 

The question immediately arises of Galileo’s attribution to Ptolemy of a similar 
argument. The implicit reference seems to be to Almagest Book 1, Chapter 7. Here 
is G. J. Toomer’s translation of the relevant passage from the original Greek (on the 
basis of Heiberg’s text).

If the Earth had a single motion in common with other heavy objects, it is obvious 
that it would be carried down faster than all of them because of its much greater 
size: living things and individual heavy objects would be left behind, riding on 
the air, and the Earth itself would very soon have fallen completely out of the 
heavens. But such things are utterly ridiculous merely to think of.13  

A more literal reading of the passage has been suggested to me by James G. Lennox, 
as follows:14

But if there were some motion of the Earth that was one and the same and shared 
with the other heavy bodies, it is clear that it would overtake everything in descent 
on account of its much greater magnitude, and the animals and individual heavy 
bodies floating on the air would be left behind, and the Earth would very quickly 
fall from the very heaven itself. But even contemplating such things would appear 
the most laughable thing of all.

This text from the Almagest is highly problematic. It is not obvious, at least to my 
mind, what the meaning conveyed by the image of an Earth’s falling from the heaven 
exactly is. The beginning of the passage highlights a common motion. The phrasing 
is consistent with both a rectilinear and a circular motion. Presumably, however, 
given the general context of the initial discussion in Chapter 7, a rectilinear motion 
is intended by Ptolemy. The subsequent portion of Chapter 7 focuses on circular 
motion explicitly and eventually goes on to dismiss the possibility of a diurnal 
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rotation of the Earth around its polar axis. The challenge posed by the passage is 
reflected in the difficulties probably encountered by the translators of the versions 
circulating in the Renaissance. In the Latin edition from Greek by George of Trebi-
zond (1395–1484) we read that the Earth “velocissime extra coelum quoque ipsum 
excideret”.15 Giovan Battista della Porta (1535–1615) published a partial edition from 
Greek of the Almagest limited to Book 1, in 1605, where he rendered the passage 
similarly, “ipsa et celerrime postremo cecidisset et ab ipso coelo”.16 The fact is that 
there is a potential ambiguity with the rendering of the verb ἐκπίπτω in this context. 
It basically means “to fall from”, but it also means “to go forth, to issue forth”. The 
Latin cognate, “excido”, chosen by George of Trebizond, has two distinct semantic 
values, namely, “to fall from” and “to raze, to demolish”. Whether these values are 
in fact to be found in the original ἐκπίπτω is highly debatable. Della Porta has 
avoided ambiguity choosing “cado”. On the other hand, as we shall see in a moment, 
Copernicus seems to have interpreted “excido” precisely in the sense that the Earth 
would demolish the heavens. 

Again, whether the second value of “excido”, i.e., “to demolish”, conveys a possible 
value of ἐκπίπτω, or whether it is too strong, is debatable. It also true, however, that, 
for those who took the heavens to be solid crystalline orbs, the Earth’s falling from 
the heavens would have to cause some damage to the crystalline orbs enveloping 
the Earth.17 It is clear that both George of Trebizond and Della Porta intended the 
passage in the sense of “falling”. But they constructed their phrasings with different 
prepositions, “extra” and “ab”, to reinforce the idea of motion beyond a place, and 
motion from a place (where “place” must not be construed as a technical term in 
cosmology, but simply as a placeholder for the prepositional phrase). 

In the version of the Almagest from Arabic, however, published in 1515, and appar-
ently in Galileo’s personal library, the problematic passage is resolved somewhat 
more openly, in a bifurcating rendition with two verbs, “et terra velociter omnino 
caderet: et pertransiret celum solum”.18 Here the translator opted for a solution that 
emphasized both the “falling [cado]” (without specifying the place from which the 
Earth was supposed to fall, though) and the “going through [pertranseo]” the heavens. 
Moreover, Chapter 7 in the version from Arabic is headed “De eo quod indicat quod 
terra motum localem non habeat”, whereas in the version from Greek by George of 
Trebizond Chapter 7 is headed “Quod terra nullo motu progressivo movetur”.19 The 
two texts signal slightly different interpretations, the translator from Arabic more 
broadly emphasizing the Earth’s being deprived of local motion, while George of 
Trebizond spotlights the Earth’s not moving by progressive motion. Finally, George 
of Trebizond’s translation has a rather awkward “universandum deferetur”. The 
gerundive “universandum” is problematic, in my view. I am at a loss as to how to 
translate it. Della Porta, who in Chapter 7 is otherwise in general agreement with 
George of Trebizond, gets rid of it. The 1515 edition of the Almagest, from Arabic, 
has simply “inferius iret”. In sum, there is little doubt that the semantic options 
open to a Renaissance reader of Almagest’s Chapter 7 were multifarious, and many 
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passages badly in need of interpretive work.
It is quite possible that Copernicus’s reading of the Almagest’s difficult passage 

led Galileo to interpret the Almagest’s passage as referring to the diurnal rotation of 
the Earth. In Copernicus’s reading the extrusion argument is attributed to Ptolemy 
explicitly (with the verb “excidere” used by Copernicus, I think, in the second sense, 
as I already anticipated). Here I follow Siebert’s intimation that we should read the 
passage, according to grammar, taking the verb “excido” in the second sense already 
mentioned.20 

Further evidence suggests, on the other hand, that very early on in his career Gali-
leo consciously (and perhaps independently of Copernicus) attributed the extrusion 
argument to Ptolemy. In Galileo’s rather traditional “Treatise on the sphere” — used 
as a basis for lectures at the university of Padua — we find a section entitled “That 
the Earth is immobile”, in which Galileo seems to imply that he is closely following 
Chapter 7 of Ptolemy’s Almagest. However, even though the text is presented as a 
quasi-paraphrase of Ptolemy’s own rebuttal of the Earth’s diurnal rotation, the series of 
arguments attributed to Ptolemy does not fully match Almagest’s Chapter 7, and sur-
prisingly ends in crescendo with a clear statement of the extrusion effect.21 Moreover, 
and to complicate matters further, Galileo’s assertion that “essendo il moto circolare 
e veloce accommodato non all’ unione, ma più tosto alla divisione e dissipazione” is 
strongly reminiscent of Copernicus’s assertion that “[q]uae vero repentina vertigine 
concitantur, videntur ad collectionem prorsum inepta, magisque unita dispergi”. To 
cap it all, in the text of the Latin version from Arabic immediately preceding the 
problematic passage an image is presented of moving bodies aggregating toward the 
centre, and remaining fixed and compressed there because of pressure coming from 
all parts uniformly seeking to reunite at the centre. This obviously runs counter to 
Copernicus’s image, according to which things rotating fast around a centre are “ad 
collectionem prorsum inepta”.22

To complete this historical sketch of the argument from extrusion, another relevant 
item of evidence needs to be considered, namely, Cristoph Clavius’s presentation of 
the extrusion effect in his Commentary on the Sphere.23

The Commentary on the Sphere might indeed have reinforced the polemical appeal 
of the extrusion argument, its value as a target for convinced Copernicans, so to 
say, given the popularity of the commentary and reputation of its author.24 Clavius 
rehearses the argument as follows. If the Earth rotated around the axis of the world 
in twenty-four hours, “all edifices would be destroyed, and in no way could they 
remain firm”.25 In effect the textual context in which Clavius’s vision of collapsing 
buildings is delineated suggests an intriguing possibility. The section “That the 
Earth is immobile” of Galileo’s Treatise on the Sphere, might have been modelled, 
at least in part, precisely on Clavius’s presentation of the argument from extrusion. I 
believe that this conclusion is further supported by the list of arguments not matching 
Almagest’s Chapter 7 that are summarized by Galileo in that section of the Treatise, 
and which appear in Clavius’s text. In particular, the argument of an arrow thrown 
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upwards vertically, which would not fall back in the same place, and the image of a 
stone falling from the mast of a moving ship, are discussed by Clavius immediately 
following the catastrophic picture of collapsing buildings.26 Galileo reversed the 
order of presentation, reserving the extrusion effect for his short finale, but kept to 
the substance of Clavius’s argumentative strategy. 

Thus, Ptolemy’s, Copernicus’s, and Clavius’s texts coalesced in Galileo’s memory, 
forming a converging framework of ideas. He reorganized, so to speak, the intricate 
network of verbal arguments and mental images, directly or indirectly related to 
Almagest’s Chapter 7, that he found in relevant contemporary works. Eventually he 
attributed the argument from extrusion to Ptolemy himself. We should not forget 
that Galileo’s culture was still influenced by a style of intellectual approach to texts 
typical of oral cultures. Memorizing content rather than checking for the verbatim 
exactness of quotations was often a scholar’s more urgent mode of interaction with 
books. As Walter Ong has masterfully taught us, oral cultures are aggregative rather 
than analytic. The aggregative character of orality-based thought, Ong suggests, 
tends to emphasize not so much integral units as clusters of units.27 In the present 
case, we see not so much an integral argument, but rather a cluster of arguments, 
the mode of appropriation of which is the act of memorizing the cluster around a 
central theme.

Thus, we should not find it exceptional that Galileo aggregated a sparse network 
of ideas into a memorable framework for thinking about Earth’s diurnal rotation and 
the extrusion effect.28 Within Galileo’s mind, Ptolemy simply became the attractive 
pole that oriented the aggregative effect of oral modes of cognition in contact with 
written material.

Finally, two further developments are worth noting, which tend to corroborate 
the conclusion that Galileo’s style of reading was still part of an orality-dominated 
mode of assimilation of texts. The first is a gut-feeling response by Galileo himself 
in the form of a marginal postil to a book presenting the extrusion argument. The 
second is the appearance of an historical text sanctioning the legitimacy of reading 
the Almagest’s controversial text as intimating the extrusion effect.

In 1612 the philosopher Giulio Cesare La Galla (1576–1624), a friend of Galileo’s, 
published a long dissertation refuting the plausibility of Galileo’s recent astronomi-
cal discoveries.29 Galileo wrote numerous postils in the margin of La Galla’s book. 
La Galla discusses the argument from extrusion at length, referring to it as “that 
formidable argument by Ptolemy”.30 When, further on in the text, La Galla reiterates 
the point that if the Earth rotated diurnally then all edifices, trees, and everything 
else would be destroyed in less than a day, Galileo inscribed in the margin “[m]elius 
dixisset Ptolemaeus…”.31 When solicited by the textual cue of the extrusion effect, 
Galileo’s memory naturally responded activating the framework of ideas converging 
on Ptolemy. 

Four decades later, G. B. Riccioli (1598–1671), in his massive Almagestum 
novum (1651), gave a detailed résumé of the history of the argument from extrusion 
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up to the mid-seventeenth century. Riccioli quoted many authors but anchored the 
progression of readings of Almagest’s Chapter 7 to Copernicus.32 He juxtaposed a 
verbatim quotation of the latter’s comments with a quotation of the difficult passage 
from Almagest’s Chapter 7 (actually in a Latin version slightly different from all 
of those I have mentioned, presumably his own, or one that I have not identified). 
Significantly, Riccioli claims that Copernicus attributed the extrusion argument to 
Ptolemy. At the same time Riccioli seems implicitly to accept that the Almagest’s 
problematic passage may, at least obscurely, hint at the extrusion effect, especially 
since he refrains from commenting on Copernicus’s attribution.33 In this way, I would 
argue, Riccioli sanctioned the legitimacy of reading Ptolemy’s passage as the first 
sediment of an accretive deposit of interpretations thrusting upward to the extrusion 
effect. A set of sparse references, which had originally been nurtured in an amalgam 
of orality-shaped interactions with books, was historicized by Riccioli into an incipi-
ent, written textual tradition.

3. Galileo on the Angle of Contingence and Similar Parabolas

In a letter written in 1635 to the mathematician Giovanni Camillo Gloriosi (1572–
1643), who had succeeded him in the chair of mathematics at Padua in 1613, Galileo 
expounded his views on the angle of contingence.34 Apart from the technical content 
strictly relevant to our goal in this paper, which I shall discuss presently, the letter 
affords us a rare glimpse of ideas that Galileo never committed to writing in full, for 
reasons on which unfortunately we can only speculate. 

Galileo begins the letter with a typical old-person’s complaint about his failing 
memory due to his age. Then, he opens his arguments by saying that he will relate 
a discourse on the angle of contingence which ran into his imagination [fantasia] a 
long time before.35 A little further on, he remembers that some time in the past he also 
excogitated many “discourses” on the same question, only one of which he will expand 
on in the letter. Both the reference to the “imagination” and the rather ambiguous 
use of the term “discourse” suggest that Galileo was reconstructing mental content 
from his memory rather than from written material in his notebooks (although, in 
fairness, it must be said that in 1635 he was on the brink of blindness).

The first discourse related by Galileo in the letter to Gloriosi is intended to prove 
that the angle of contingence is called “angle” only equivocally, it being in fact not 
a true angle. Galileo makes his first move from what he takes to be the accepted 
definition of angle, i.e., the inclination of two lines touching each other at a point that 
are not placed straight with respect to each other.36 He then proposes the following 
argument (cf. Figure 1).

Let us consider a regular polygon inscribed in a circle. The inclinations of the 
sides are as many as the sides, if the number of sides is uneven, or half the number 
of sides if the latter is even (since in this case two opposite sides will have the same 
inclination). If we now imagine that a side of the polygon is applied to any straight 
line whatever, no angle will be formed between the side and the straight line since 
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they progress along the same direction. But the subsequent side will form an angle 
since it is inclined to the line and touches it. Given that the circle is conceived of as 
a polygon of infinite sides, then all directions will be found in its perimeter, that is 
infinite directions. There will thus be the direction of any line whatever, which can 
only be thought of as that of the side applied to it. Therefore the side of the circle 
applied to the straight line does not form an angle with the straight line, and this is the 
so-called point of contact. It is also inappropriate to say that although a point on the 
circumference does not contain an angle with the tangent at that point, the contigu-
ous point will contain such an angle, exactly as in the polygon it is the subsequent 
side that forms the angle with the direction of the preceding side. The reason is that 
the point subsequent to the point of contact does not touch the straight line, which 
is touched only by one point of the circumference. Therefore since in the definition 
of angle both the inclination and the contact are required, the so-called angle of 
contingence is not a true angle and has no quantity.37 

Galileo now goes on to propose another “discourse” in support of his view that 
the angle of contingence is no angle at all, which he remembers to have crafted 
long ago (Figure 2). Let us consider line FG turning on point C. The mixed angle 
ACG will become more and more acute until eventually it will transform into 
mixed angle OCA. This transformation cannot occur unless the angle annihilates, 
which, Galileo argues, can happen only when the turning line, GF, coincides with 
the horizontal line (cf. Figure 2). If we look at the history of the controversy on the 
angle of contingence we find a strikingly similar view, i.e., the angle of contingence 
is not a true angle and not a quantity, and a strikingly similar argument in Jacques 
Peletier (1517–82).38 Galileo might have read the argument in Peletier’s edition 
of Euclid, or in one of the publications by Peletier in which similar arguments are 
repeated.39 However, I believe it is more likely that he would have seen the résumé 
of the discussion (with verbatim quotations) published by Peletier’s opponent in 
the controversy, namely, Christoph Clavius.40 

This figure, I think, more accurately reflects Galileo’s thinking than that printed in Opere, xvi, 
331, which was based on the first edition of the letter given by Gloriosi. The absence of references 
in Galileo’s text to the lettering of the diagram printed by Gloriosi might suggest that Galileo’s 
original figure was different, or that there was no figure at all accompanying the reasoning. In the 
latter case my reconstruction would have only a didactic value.

FIG. 1. 
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Peletier claims that the angle of contingence is not an angle because it forms no 
section with the circumference, while angle consists precisely in forming a section 
[sectio, or decussatio] not a contact [contactus] (Figure 3). A line, ED, turning 
on point A, forms angles more and more acute with the circumference because it 
sections it. But when the line coincides with the horizontal tangent a section will 
no longer occur. We might say that Peletier has a punctiform view of the angle of 
contingence, since for him “all angles consist in no more than one point”.41 Clavius 
held a conception radically different from Peletier’s, according to which the angle of 
contingence is indeed a true angle and has quantity.42 As we shall see in a moment, 
Galileo might have elaborated Peletier’s punctiform view of angles, while rejecting 
Clavius’s opinion.

In the salient part of the letter to Gloriosi, Galileo claims to refute the “discourse” 
[discorso], according to which not only is the angle of contingence a true quantity, but 
as such it is also infinitely divisible. Infinite divisibility, Galileo argues, is warranted 

A straight line forming a mixed angle passes from one side to another of a horizontal line so that 
the mixed angle must be annihilated. I have slightly simplified Galileo’s original figure.

FIG. 2. 

The diagram accompanying Peletier’s argument (op. cit. (ref. 39), 75). An identical diagram was 
published by Clavius (op. cit. (ref. 40), 117).

FIG. 3. 
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by the possibility of constructing greater and greater circles passing through the 
same point of contact between circumference and tangent (this example was one of 
Clavius’s counter-arguments to Peletier). Galileo’s reasoning strategy is paramount 
for our purposes because it involves a recourse to similar figures. We will see in the 
second part of this section that for Galileo parabolic trajectories are similar curves; 
and in the next section, that similar parabolic trajectories, in the broader context of 
the angle of contingence, are the hidden scaffolding of Galileo’s counter-argument 
to the extrusion effect. 

Not the angle, as Clavius had claimed, but the space between the circumference 
of the circle and the tangent line, Galileo argues, can actually be divided by greater 
and greater circumferences passing through the same point of contact between cir-
cumference and tangent.43 This, he continues, can be shown starting with the simple 
example of rectilinear similar polygons (Figure 4).44

The perimeter of the greater hexagon divides the space between the smaller hexa-
gon and the tangent, but angle IBE is not divided. In consequence, regardless of the 
number of sides of the similar polygons angle IBE will never be divided. The angle, 
Galileo points out, could be divided only by a dissimilar polygon, one with a greater 
number of sides. Hence, in Galileo’s view, since all circles are similar polygons of 
infinite sides, when they are applied to the same tangent at B, the space between the 
tangent and the circumference is divided by the circumferences of the greater circles, 
but the angle of contingence, which is common to all, is not divided. Further, Galileo 
concludes, since the circles are polygons of infinite sides it cannot be said that a 
greater circle is a polygon of more sides and thus capable of dividing the angle, on 
the analogy of polygons of a finite number of sides. Interestingly, Galileo notes that, 
since when the number of sides of the polygons increases angle IBE becomes more 
and more acute, it looks as though the angle will be infinitely acute when the number 
of sides rises to infinity, in which case the angle will become “non-quantifiable, and 
not angle [non quanto e non angolo]”.45 

Something of Peletier’s punctiform analysis is reflected in Galileo’s line of 

Two rectilinear similar polygons (hexagons in this case, only half of which are diagrammed by 
Galileo) inscribed in two circles, passing through the same point of contact B. I have simplified 
the diagram by dotting the lines of the circumferences and limiting the lettering to what is needed 
for my discussion.

FIG. 4. 
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reasoning. At point B no true angle can be formed since, we might say, the inclinations 
of circumference and the tangent being the same the point alone cannot constitute 
a section, whereas, in Galileo’s definition, it is the inclination of two lines touching 
each other at one point while not being placed straight with respect to each other 
that forms an angle.

To sum up the first part of this section, we have seen that Galileo begins his response 
to Gloriosi with an argument, or rather the recollection of a discourse, apparently 
based on a conception of the composition of lines in terms of points, since he refers to 
a point “subsequent” to the point of contact. He then moves on to another discourse, 
strongly reminiscent of one of Peletier’s arguments aimed at proving that the angle 
of contingence is actually no angle at all. Finally, in my view, Galileo propounds his 
most original reflection on the angle of contingence based on similar figures, perhaps 
elaborating on Peletier’s punctiform view of the nature of an angle. 

Galileo starts by remembering one of his (presumably) first discourses about the 
angle of contingence. When moving to his second discourse he does not remember 
his past reading of Peletier’s arguments, nor does he bother to clarify whether his 
ideas have been inspired by others. He shapes ideas on demand, so to say, solicited 
by Gloriosi’s inquiry, through the medium of reconstructive recollection. 

We have noted that for Galileo all circles are similar polygons of infinite sides. 
From a manuscript sheet, written in preparation for the calculation of the ballistic 
tables published in Two new sciences, we can gather that he held analogous views 
concerning parabolas (Figure 5).46

Parabolas can be found, Galileo says, similar to each other.47 We now know that 
all parabolas are indeed similar curves.48 Galileo is not explicit about this possible 
generalization, since obviously he did not have an analytic framework, that is, a 
Cartesian framework, for thinking about conic sections in all generality. There is, 
however, a tantalizing statement concerning similar paraboloids in Archimedes 
that may have been the source of Galileo’s thinking about similar parabolas. Wilbur 
Knorr has actually claimed that Archimedes “asserts the theorem that all parabolas 
are similar in the Preface to Conoids and Spheroids”.49 I surveyed two Renaissance 
editions of Archimedes that Galileo would have seen, but I did not find an explicit 
assertion of that theorem. In the Archimedes edition annotated by Galileo, listed in his 
own personal library, and which we may thus assume was the one he used to consult, 
we find the statement that “omnia vero conoidalia rectangula [i.e., paraboloids] sunt 
similia”. Almost the same phrasing is used in the Commandino edition.50 I conclude, 
therefore, that all Galileo could have gathered from Archimedes is a pronouncement 
on similar paraboloids, although, admittedly, he might have extended this view to 
the parabolas generating paraboloids. But fortunately Galileo’s views on similar 
parabolas emerge more clearly when we investigate in detail the text associated with 
the diagram presented in Figure 5, on f. 122v of Manuscript 72. 

The text concerns the calculation of the parabolic trajectories of projectiles launched 
from point D (cf. lower left corner, in Figure 5, note that the parabolic trajectories are 
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not drawn in the diagram), at different inclinations but with the same initial energy 
(impetus, rather, in Galileo’s terminology). Galileo starts from the parabolic trajectory 
determined by an elevation of 45°, and looks for the parabolic trajectories generated 
by the same impetus at point D with different shooting elevations, for example that 
with an elevation of 55°. We need not consider the technical details of the ingenious 
procedure excogitated by Galileo. It is basically an approximation technique based 
on the well-known regula falsi. Galileo first guesses the trajectory by assuming that 
its axis is the same (vertical) axis of the parabola generated by a 45° elevation, then 
he linearly scales the “false” trajectory to the true one by applying a simple propor-
tionality rule. The warrant of the scaling operation is in fact the similarity between the 
two parabolas, which are (so to speak) “boxed” by, or inscribed in, similar triangles. 

The relevant portion of f. 122v, in Manuscript 72. The diagram printed in Opere, viii, 432, is 
incomplete.

FIG. 5. 
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Since Galileo did not draw the parabolas I have provided a reconstructed diagram in 
order to clarify the strategy of Galileo’s procedure (cf. Figure 6). 

The similarity attributed to parabolas that emerges from this procedure is reducible 
to Euclidean similarity between rectilinear figures, in our case simple right triangles. 
In Figure 7, I have drawn a diagram with the false and true semi-parabolas used 
in Galileo’s procedure (remember that Galileo’s idealized ballistic trajectories are 
symmetrical with respect to a vertical axis). I have “boxed” them by grey-shaded 
right triangles, in order to highlight their similarity. Thus, what Galileo has in mind 
when speaking of similarity between parabolas is the simple Euclidean idea that a 
proportionality transformation somehow connects the two similar figures. Galileo 
has of course no algorithm to compute a complete transformation in the case of 
curves such as parabolas. But all he needs in order to construct the ballistic tables 
are the characteristic dimensions of the parabolas, which he calls “amplitude” and 
“height”. These are in fact characteristic dimensions of the triangle within which 
the semi-parabolas are inscribed. These characteristics can be proportionally trans-
formed so as to obtain each true trajectory from the corresponding false one for any 
chosen elevation. The lack of a complete transformation procedure for parabolas 
also explains why Galileo did not draw the parabolas on his folio. He did not have 
a simple point-by-point drawing procedure from the linearly transformable charac-
teristic dimensions.

To sum up, Galileo had recourse to similar parabolas in order to construct the bal-
listic tables presented in Two new sciences. The procedure is based on the extension of 
Euclidean similarity, valid for rectilinear figures, to parabolas. Similar semi-parabolas 
are inscribed in similar right triangles. This simply means that the semi-parabolas 
are tangent to the common hypotenuse of the triangles at the vertex in the lower-left 
corner (Figure 7), a constraint imposed by the ballistic condition of launch at the same 

A simplified version of the diagram on f. 122v, showing the similar parabolas used in the calcula-
tion but not represented by Galileo. Note that I have plotted here only semi-parabolas and their 
axes of symmetry.

FIG. 6. 
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elevation, and their vertical axes coincide with the vertical side of the triangle. 
In the next section, I shall combine Galileo’s approaches to similar parabolas and 

to the angle of contingence, and argue that they are the two hidden structures scaf-
folding Galileo’s counter-argument to the extrusion effect.

4. Galileo’s Counter-argument to the Extrusion Effect

The counter-argument to the extrusion effect, presented by Galileo in the Dialogue, 
is embedded in a complex dialogical structure. The three famous interlocutors, Sal-
viati, Sagredo, and Simplicio, a collective mouthpiece for the collage of Aristotelian 
positions that Galileo confronted in his career, engage in a lively discussion driven 
by Salviati’s re-enactment of Socratic maieutics with Simplicio.51 The questioning 
of Simplicio’s mind, however, is coloured by pungent irony. Indeed irony, with its 
suspension of the literal level of meaning, is always a threatening presence in this 
long section of the Dialogue. In the process of questioning and eliciting answers, 
Galileo will raise objections to his own reasoning too. But since the Dialogue, writ-
ten in Italian, was mostly aimed at neutralizing entrenched presuppositions against 
Copernican astronomy, which were common to a broad audience, Galileo did not 
cast the progression of questions and answers in a strictly technical language. He 
rather let ideas flow in a cyclical, wave-like movement of thinking.

The three interlocutors are agreed that any circular motion, like that of a sling, or 
a wheel, has a faculty of extruding objects placed on the circumference, and that the 
direction of the object’s motion upon leaving the extruding device is the tangent to 
the circumference at the point of separation. Further, they agree that the motion after 
separation will be uniform and that if the circular motion is fast enough extrusion 
in slings and wheels will at some point occur. But all heavy bodies on the Earth’s 

The false (1) and true semi-parabolas (2) (for an elevation other than 45°), which, in Galileo’s view, 
are similar in that they can be thought of as “boxed”, or inscribed, by similar right triangles.

FIG. 7. 
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surface have a natural tendency downwards. The three interlocutors have no doubt 
on this either. Then Galileo issues his challenge to Simplicio. Galileo wishes to 
prove that no matter how small that downward tendency, and no matter how fast 
the diurnal rotation of the Earth, all heavy objects will remain firmly attached to the 
Earth’s surface.52 

Two objections are subsequently raised by Sagredo. I here summarize and para-
phrase Galileo’s text. Imagine a body a few instants along the tangent after leaving the 
rotating Earth. Immediately upon leaving the Earth’s surface it will start descending 
toward the centre of the Earth in naturally accelerated fall. The first objection is as 
follows. The downward tendency, in terms of degrees of speed of fall, decreases ad 
infinitum as the body is thought of as approaching backwards the point of separation. 
Galileo has in fact already introduced in the Dialogue the law of falling bodies, and 
the idea of the uniform increase of a falling body’s degree of speed with time. Second 
objection, how about the weight of the object? Going by Aristotelian physics the 
lighter the body the less fast it will fall. Thus, Sagredo concludes, by combining the 
two effects one has good reason to doubt that at least some objects will be able to 
escape the grip of the Earth and eventually be extruded. To this conclusion Galileo 
replies with the following counter-argument. It is this reply that has given rise to the 
controversy that led David Hill to his claim of dishonesty (cf. Figure 8).

Let us assume that at point A an object leaves the surface of the Earth along the 
tangent at A. Since the motion will be uniform evenly spaced points on line AB 
represent instants of equal intervals of time. The degrees of speed, and the vertical 
distances fallen through, are represented by segments FG, HI, KL. 

I need to pause here. In his own explanation of this diagram, Galileo initially 
states that these segments represents “degrees of speed” acquired during AF, AH, 
AK. Only at some later point in the passage does Galileo equate these segments (FG, 
HI, KL) with distances fallen through as well. But this equation is questionable, not 
to say illegitimate, because (by Galileo’s own law of fall) the distances fallen vary 

FIG. 8. The diagram supporting Galileo’s counter-argument.
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as the square of the times elapsed. So he may be fairly charged with committing 
some kind of equivocation.

Galileo can also incorporate in the argument the Aristotelian assumption that lighter 
bodies fall slower. He depicts this with the device of differently inclined lines, so the 
lighter the body the less acute the angle of inclination of lines AE, AD, i.e., the less 
fast the body will fall. There is a simplifying hypothesis implicitly made by Galileo. 
The directions of fall are vertical, not in the sense that they tend towards the centre 
of the Earth, but in the sense that they are parallel to the radius of the Earth at the 
point of separation. In Galileo’s diagram the diminution ad infinitum of both weight 
and degree of speed are thus captured. Galileo continues as follows:

The degrees of speed, infinitely diminished by the decrease of the weight of 
the moving body and by the approach to the first point of motion (the state of 
rest), are always determinate. They correspond proportionately to the parallels 
included between the two straight lines meeting in an angle such as the angle 
BAE, or BAD, or some other angle infinitely acute but still rectilinear. But the 
diminution of the spaces through which the moving body must go to return to 
the surface of the wheel is proportional to another sort of diminution included 
between lines which contain an angle infinitely narrower and more acute than 
any rectilinear angle whatever.… Now the parallels included between the straight 
lines, as they retreat toward the angle, always diminish in the same ratio…. But 
this is not thus with the line intercepted between the tangent and the circumfer-
ence of the circle.53

Since the curvilinear angle is infinitely narrower and more acute than any rectilinear 
one, then the downward tendency will always be more than enough for the falling 
body to cover the distance between the tangent and the surface of the Earth. But what 
about the actual trajectory of the projected object? Galileo must have known that it 
is a parabolic arc. The problem of the actual trajectory is the hub around which the 
accusation of dishonesty raised by David Hill turns. Let’s see how.

Hill has raised the following objection to Galileo’s counter-argument to the extru-
sion effect. In Hill’s words, it 

contains an interesting and fairly well-concealed fallacy which can be charac-
terized either as a non-sequitur partly disguised by the vagueness of a key term 
or as a classical equivocation on that term. Galilei successfully argues that as 
we approach the point of contact, A, the distances which need to be covered 
to prevent projection necessarily vanish more quickly than the speeds of fall. 
But this does not imply that centripetal tendencies must overwhelm centrifugal 
tendencies. To prove this Galileo would have to show that the distances which 
need to be covered to prevent projection necessarily vanish more quickly than 
the distances a falling body would actually cover (as the point of contact is 
approached). This, however, cannot be established. These two distances vanish 
at the same rate, both being as the square of the speeds (and times).54 
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Further, Hill goes on to qualify Galileo’s “mistaken inference as surprising and sus-
picious”.55 The reason for Hill’s sceptical conclusion is that since, as is well known, 
by the time he completed the Dialogue Galileo had long reached his results about 
the parabolic trajectories of projectiles, it seems 

difficult to believe that Galileo simply never saw the relevance of the parabolic 
trajectory to the examination of the projection argument.… Can a projected 
object rise above, and remain above, the spinning Earth? Clearly, it could, if its 
speed of projection is large enough to produce a sufficiently flat parabolic arc 
… a parabola sharing a tangent might always lie between tangent and circle, in 
which case distances covered in fall are always less than those which must be 
covered to prevent projection.56 

In Figure 9, I have visualized what Hill presumably has in mind when speaking of 
parabolic trajectories for projected bodies, by adding them to Galileo’s original dia-
gram. When the parabolic arcs are sufficiently flat, as Hill has suggested, they must 
leave the Earth’s surface and thus extrusion will eventually ensue. 

In the remaining part of this section, I will try to show that not only do we find 
in Galileo’s Dialogue vestiges of the objection that Hill has raised (though under 
the guise of a language that Galileo wanted accessible to a vast audience), a point 
strangely missed by Hill, but that Galileo responded to that self-raised objection, in 
a way that needs to be unpacked and illuminated in the context of his approach to 
the angle of contingence and similar parabolas. 

As I have already suggested, if we are to understand Galileo’s counter-argument 
fully we need to follow the wave-like movement of his thinking carefully. The 
counter-argument in fact is not exhausted by the portion examined and criticized by 
Hill. It cannot be separated, in other words, from the self-objections subsequently 
raised by Galileo and the answers to those self-objections.

Sagredo, the layman not committed to any philosophical school, is dissatisfied 

Hill’s objection to Galileo. The dotted lines represent parabolas tangent at A to the Earth (circle 
AP), i.e., the actual trajectories of projected bodies, as Galileo knew. Being open paths, when they 
are sufficiently flat, as Hill has suggested, they must leave the Earth’s surface and thus extrusion 
can eventually ensue.

FIG. 9. 
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with Salviati’s diagrammatic construction. If the speed of fall decreasing with weight 
(under the assumption of Aristotelian physics, for the sake of argument) followed the 
proportion of the line segments between tangent and circumference, or even a greater 
proportion, what would then happen?57 Salviati is quick to mention that experience 
refutes the assumption of Aristotelian physics. The case is thus thrown out on empiri-
cal grounds. But this is besides Sagredo’s point. The fact is that Salviati-Galileo is 
deeply intrigued by Sagredo’s objection and wants to show that regardless of that 
proportion extrusion will never occur. We must take stock here. The language of this 
passage makes no sense in terms of Euclidean proportionality.58 What does Sagredo 
really mean? It is in fact by making the angle of lines, such as AD, AE, with the 
tangent at A more and more acute that speed can be diminished ad infinitum. It is the 
inclination of those lines in the diagram that represents the decrease in speed of fall 
owing to the decrease in weight, whatever the relation between these two magnitudes 
might be. It makes no sense to talk of the proportion of that diminution as though 
“following” the proportion of the line segments between tangent and circumference 
approaching the point of contact! Thus, I take Sagredo’s passage as intimating, though 
in a veiled allusion, the fact that Galileo actually imagines the parabolic path of the 
extruded object, exactly as Hill argues that he should have done. On the other hand, 
Sagredo’s language makes perfect sense if we assume that he is in fact describing the 
trajectory of the extruded object. For, in this way it is perfectly meaningful to talk of 
the line segments between tangent and circumference following a certain proportion, 
or rather a certain progression, as they approach the point of contact. Here, then, 
proportionality has no Euclidean technical meaning. 

Let us now turn to examining how Galileo goes about resolving this self-objection. 
Extrusion does not occur, even under the circumstance hinted at by Sagredo.

What makes me believe this is that a diminution of weight made according to 
the ratio of the parallels between the tangent and the circumference has as its 
ultimate and highest term the absence of weight, just as those parallels have for 
their ultimate term of reduction precisely that contact which is an indivisible 
point. Now weight never does diminish to its last term, for then the moving body 
would be weightless; but the space of return for the projectile to the circumfer-
ence does reduce to its ultimate smallness, which happens when the moving 
body rests upon the circumference at that very point of contact, so that no space 
whatever is required for its return.59 

Here Galileo has introduced the point of contact as an indivisible point, the point at 
which no distance is required of the falling body to rejoin the surface of the Earth. 
The ground has been prepared for the small finale but the last movement must break 
through Simplicio’s misconceptions about the contact between tangent and straight 
line. Simplicio is flabbergasted by Salviati’s argument and raises the question that 
geometry, though it functions very well in the abstract, does not work in the real 
world. When it comes to matter, Simplicio claims, it makes no sense to say that 
sphera tangit planum in puncto. Thus, in Simplicio’s view, the tangent at A on the 
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real Earth not only touches one point, A, but grazes the surface for many miles. To 
which, Salviati replies as follows.

But don’t you see that if I grant you this, it will be so much the worse for your 
case? For if even assuming that the tangent lies removed except at one point, it 
has been proven that the projectile would not be separated, because of the extreme 
acuteness of the angle of contingence (if it can indeed be called an angle), how 
much less cause will it have for becoming separated if that angle is completely 
closed and the surface united with the tangent?60

Galileo’s approach to the angle of contingence as no angle, no quantity, is hinted at 
here. It is of great importance to realize that in this final part of the argument Galileo 
is exploring the limit behaviour of the falling object in proximity of the point of con-
tact. What happens to the falling object at the point of contact? This is the hovering 
question the answer to which can seal the counter-argument to the extrusion effect.

That the trajectory is parabolic in the vicinity of the point of contact Galileo has 
intimated already. But are the parabolic trajectories distinguishable in terms of the 
motion of the extruded object in the vicinity of the point of contact? Hill argues that 
this must be the case (cf. Figure 9). I suggest that in the framework of Galileo’s math-
ematical physics they are not. Galileo has no calculus to fine-tune his analysis of the 
limit behaviour of the falling body. On Galileo’s footsteps, Huygens will accomplish 
exactly this, a few decades later. It is only Galileo’s views on the angle of contact (as 
being no quantity) and his views on similar parabolas that allow us to explore the limit 
behaviour of the falling object within the context of his mathematical physics. 

Similar parabolic arcs in the case of extrusion can be represented — according to 
Galileo’s preparatory analysis for the ballistic tables — by inscribing parabolic arcs 

A visualization of similar parabolic trajectories, according to Galileo, in the case of extrusion. 
The parabolic arcs are all similar to one another in that they are inscribed in similar rectangles. To 
avoid confusion in the diagram I have not represented the similar rectangles framing the parabolic 
arcs. (I have constructed these similar arcs with the help of the drawing software Canvas 9.)

FIG. 10. 
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with vertex at A in similar rectangles. Some arcs may intersect the surface of the Earth 
(thus extrusion would not follow, according to Hill’s analysis), others escape from 
its surface (thus extrusion would follow, according to Hill’s analysis). At the point of 
contact, however, the angle of contingence is the same for all arcs in the sense that 
it is no angle at all. All that can be said is that for Galileo the angle of contingence 
is not divided. Thus, as in the letter to Gloriosi, even in this case of extrusion, it is 
not the angle that can be divided. It is only the space between the circumference of 
the Earth and the tangent line at A that can actually be divided by greater and greater 
parabolic arcs passing through the same point of contact between the circumference 
of the Earth and the tangent. However, this fact that the space between the circum-
ference of the Earth and the tangent line at A can actually be divided cannot serve 
our present purpose of exploring the limit behaviour of the falling body. Since all 
similar parabolic arcs may be reduced to similar polygons of infinite sides — as 
we may speculate in accord with Galileo’s reasoning about circles being all similar 
polygons of infinite sides — then, when similar parabolic arcs are applied to the 
same tangent at A, we must conclude that the angle of contingence common to all 
parabolic arcs is not divided, even though the space between the tangent and the 
circumference is divided. In other words, in Galileo’s physics there is available no 
measure whatsoever for the angles of contingence of different but similar parabolic 
arcs at the point of tangency.

Hence, in Galileo’s physics, the limit behaviours of a falling body moving along 
different but similar parabolic arcs — in the vicinity of the point of contact — cannot 
be distinguished by discriminating among the angles of contingence at the point of 
contact. The angles of contingence at the point of contact are all the same. On this 
ground, the limit behaviour is therefore independent of the characteristics of the 
trajectory. It is at the point of contact, A, that the falling body need fall no distance 
to rejoin the Earth, regardless of the different, incipient parabolic trajectories. 

What Galileo would have required to further his investigation of the limit behav-
iour of the extruded body, and thus come to terms with the error in his analysis, is 
some basic understanding of curvature of the trajectory, how to measure it, and a 
good helping of some form of infinitesimal calculus. It is such an understanding of 
curvature as a local property associated with curves (which we tend to take for granted 
today), that, I believe, has derailed Hill’s fascinating analysis. Galileo, however, must 
be credited with the merit of realizing that the imagery behind the extrusion effect, 
the vision of buildings collapsing and animals and trees flying off toward the sky, 
was the fruit of deep-rooted misconceptions about centrifugal effects. Projection 
in rotating devices occurs not along the radial direction of the rotating device but 
along the straight line tangent to the circumference at the point of separation. Galileo 
succeeded in re-orienting discussion of the centrifugal effects of a rotating Earth, 
although he lacked the mathematical machinery to tame the problem. 

To conclude, there is some irony in this story. Knowledge of the parabolic trajectory 
of projectiles, one of Galileo’s lasting achievements in mathematical physics, was 
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nowhere near enough for him to analyse the incipient behaviour of a falling body 
in the process of being extruded, or rather projected, by a fast rotating Earth. The 
analysis of the local behaviour of bodies at the point of separation from the extruding 
device requires a mathematical approach which goes into the infinitesimal. Galileo’s 
understanding of the parabolic trajectory of projectiles rested on his classical approach 
to conic sections, as had been illustrated by Apollonius, not on the mathematics of 
curves analytically describable as loci in terms of local properties. The merit of fully 
understanding the properties of centrifugal effects was left for Christiaan Huygens, 
later in the seventeenth century, although, I am convinced, Huygens’s possible depend-
ence on at least some of Galileo’s ideas deserves further scrutiny.

5. Conclusion

Galileo’s attribution of the extrusion argument to Ptolemy has an intriguing his-
tory that can be illuminated in terms of the effects of orality-shaped interactions 
with books. The form that cognition takes in a culture at the intersection of orality 
and writing, such as that of the late Renaissance, is a fertile terrain for exploring a 
Renaissance scholar’s modes of appropriations of scientific ideas. Both Galileo and 
the intellectuals whom we have encountered in this story still participated in that 
form of cognition.

In the Almagestum novum, as we have noted, Riccioli sketched a brief history 
of the arguments and counter-arguments inspired by the extrusion effect. While 
marking the transformation of a loose bundle of ideas floating in the elusive space 
between orality and writing into a written tradition he also conceded defeat. In fact 
he headed the main section containing his discussion of the extrusion argument as 
follows. “Proponuntur argumenta quinque, sed invalida …”, against the diurnal rota-
tion of the Earth.61 The argument from the extrusion effect, one of the five proposed 
in that section, was invalid in Ricclioli’s view. It would be fascinating to speculate 
what might have led Riccioli to his conclusions. Unfortunately for us he only lists 
some counter-arguments but does not comment on their substance. He compiles a 
detached reportage of the status quaestionis but mutes his personal voice. Thus we 
are left with a tantalizing question, why is the extrusion argument against the diur-
nal rotation of the Earth invalid for Riccioli? Together with lesser works, Riccioli 
mentions Galileo’s Dialogue, Kepler’s Epitome, and Ismael Boulliau’s Philolai, 
sive dissertationis de vero systemate mundi. However, both Kepler’s and Boulliau’s 
discussions of the extrusion argument are rather obscure, and boil down to no more 
than a few comments in passing.62 

Thus I believe that the only credible source of Riccioli’s conviction must have 
been Galileo, to whom, on the other hand, vast portions of the Almagestum novum 
are devoted. This is also indirectly suggested by one comment that Riccioli makes, 
referring the reader who wishes to know more about centrifugal effects to what Gali-
leo relates on this subjects in the Dialogue.63 A history of the reception of Galileo’s 
counter-argument and of the eventual demise of the argument from extrusion would 
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be highly rewarding for historians of seventeenth-century science. It remains for 
future research.64

Finally, if my reconstruction of the context of this Galilean counterargument is 
correct, we must reject Hill’s conclusion that Galileo engaged in a morally deplorable 
act of conscious deception; that, deploying mathematical “trickery” to strengthen 
the rhetorical force of persuasion of his reasoning, Galileo published what he knew 
was a fundamentally flawed argument.65 This conclusion is untenable, the fruit of 
historical anachronism.

I have argued that Galileo’s thinking in the Dialogue cannot be disembodied from 
its dialogical framework. It is a wave-like flow of argumentation that incorporates 
self-objections and answers to them. In this maieutic process Galileo quite possibly 
adumbrated the type of objection from the parabolic trajectory of projectiles that, 
in Hill’s view, should have proven to him the blatant inconsistency of his counter-
argument. But Galileo’s views on the angle of contingence and similar parabolic 
arcs cast a raking light on the counter-argument. They allow us to catch a glimpse 
of the thought-processes that prevented him from seeing that inconsistency. To think 
locally about the point of separation from the extruding device Galileo should have 
mastered the apparatus of calculus and curvature that Hill seems to have taken for 
granted in his analysis. Huygens was right, Hill went wrong. Galileus deceptus, non 
minime decepit.
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THE NUB OF THE LUNAR PROBLEM: 
FROM EULER TO G. W. HILL

CURTIS WILSON, St John’s College, Annapolis

On 17 April 1766, Johann Albrecht Euler, son of Leonhard Euler, read to the Berlin 
Academy a paper entitled “Réflexions sur la Variation de la Lune”.1 (The term ‘Vari-
ation’ is the name Tycho Brahe gave to an inequality of the Moon he discovered in 
the 1590s: with the mean motion counted from New Moon or Full Moon, he found 
the Moon about º of a degree behind its mean position a week before New Moon and 
before Full Moon, and about º of a degree ahead of its mean position a week after 
New Moon and after Full Moon.) In the “Réflexions”, Euler gave a derivation of the 
Variation from the law of gravitation. This is how he posed the problem:2 

To determine the motion of a moon making its revolutions around the Earth in 
the plane of the ecliptic, without eccentricity, while the Sun moves uniformly 
in a circle around the Earth.

This is a three-body problem. Its statement here abstracts from well-known features 
of our Moon’s actual motion, chiefly the eccentricity of the Moon’s orbit about the 
Earth, the inclination of its orbit to the ecliptic, and the eccentricity of the orbit of 
the Earth-Moon system about the Sun. The assumption of a circle for the orbit of 
the Sun (or Earth) implies that the Moon’s mass is being taken as negligible. Of the 
simplified problem thus enunciated, Euler made bold to declare: 

However chimerical this question may appear, I dare assert that if one succeeded 
in finding a perfect solution of it, one would hardly find any further difficulty in 
determining the true movement of the actual Moon.

Before Euler, Isaac Newton had already given a geometrical derivation of Tycho’s 
Variation from the inverse-square law.3 Euler was no doubt aware of it. Newton 
showed that, if the Moon were to move pristinely in a circle about the Earth and 
the Sun’s force was then introduced, it would flatten the circle in the direction of 
the Earth–Sun line (line of syzygies). The ratio of the minor axis to the major axis 
of the resulting oval would be approximately 69:70, and the Moon would move 
more rapidly through the syzygies than at the quadratures. Euler, by contrast, was 
asking in his paper of 1766 for a ‘perfect’ solution to the problem of the Variation. 
He undoubtedly meant an analytic solution consisting of a converging series of 
terms. In his paper he derived the first two terms of such a series. (His second term 
was mistaken, owing to an easily correctable arithmetical error.) His method would 
have permitted him to derive further terms, thereby improving the precision of his 
solution progressively. 

For a century Euler’s dare found no response from lunar theorists. Then in two 
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papers of 1877 and 1878, George William Hill (1838–1914), a mathematician in 
the U.S. Nautical Almanac Office, accomplished all that Euler could have wished.4 
(We have no evidence that Hill ever read Euler’s paper of 1766, but he was familiar 
with Euler’s third lunar theory of 1772, which proceeds along the lines of the 1766 
paper.) In his paper of 1878, Hill solved the very problem that Euler had proposed. 
He computed with high precision (to 15 decimal places) the numerical parameters 
defining the orbit that yields Tycho’s Variation (he dubbed this orbit the ‘Variation 
Curve’). His method was such as to permit increasing the precision to any degree 
that might be required. Moreover, he laid out a plan for developing the entire lunar 
theory on the basis of the Variation Curve.5 

Hill’s paper of 1877 assumes as known the Variation Curve developed in his paper 
of 1878. In this earlier paper Hill imagined an infinitesimal amount of eccentricity 
injected into the Variation Curve, and asked what motion of the perigee would ensue. 
His result, obtained by means of sophisticated summations of infinite series, was in 
astonishingly good agreement with the observed motion of the Moon’s perigee.6 No 
prior lunar theorist had come anywhere near as close. This was a stunning valida-
tion of his plan for taking the Variation Curve as the starting-point for developing 
the lunar theory. 

Assigned to another engrossing task at the Nautical Almanac Office, Hill was 
deflected from completing his lunar theory. He bequeathed its further development to 
a younger man, Ernest W. Brown (1866–1938). Between 1891 and 1908, by untiring 
paper-and-pencil calculations, Brown carried Hill’s theory to completion. This further 
development consisted in modifying Hill’s solution to his differential equations in such 
a way as to take into account the features of the lunar motion that the first solution 
had abstracted from. These features were re-introduced as terms proportional to small 
parameters and their powers and products — chiefly the eccentricity of the Moon’s 
orbit (e ≈ 1/18), the sine of half the orbital inclination (γ ≈ 1/22), the eccentricity 
of the Earth’s orbit (e′ ≈ 1/60), and the parallax of the lunar orbit from the distance 
of the Sun (a/a′ ≈ 1/390). All these terms were sinusoidal; astronomers referred to 
them generically as “inequalities”. In its final form the theory contained some 3000 
sinusoidal terms, accurate to about a hundredth of an arc-second in all terms of the 
longitude and latitude, and to about a thousandth of an arc-second in parallax.

The Hill-Brown theory is the direct precursor of present-day lunar theory. In 
recent decades, lunar theory has been developed to yet higher degrees of precision, 
the aim always being to match the precision of the observations. At the present day 
observations can locate the Moon’s position with respect to the Earth to within 2 or 
3 cm in radius vector, and 5 or 6 cm in longitude. Further increases in observational 
precision can be expected. The theoretical predictions are being obtained by elec-
tronic computer through numerical integration of two differential equations that are 
recognizably Hill’s, modified in minor respects.

Lunar theorists before Hill, from Alexis Clairaut (Théorie de la Lune, 1752) to 
Charles Delaunay (Théorie du mouvement de la Lune, 1860, 1867), with the nota-
ble exception of Leonhard Euler in his third lunar theory (Theoria motuum Lunae, 
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nova methodo pertractata, 1772), typically took their start from a solution of the 
two-body problem, in which the Moon moves in an ellipse about the Earth in one 
focus. They then perturbed this solution so as to include the effects due to the Sun’s 
gravitational action.

The ellipse differs from the Variation Curve. Both curves are symmetrical about 
two mutually perpendicular axes. Given the lengths of the two axes, there is one and 
only one ellipse that passes at right angles through the four endpoints of the axes, 
and one and only one Variation Curve passing at right angles through the same four 
points. The ellipse is expressed by a well-known algebraic formula, but the Varia-
tion Curve cannot be expressed by any finite formula. It must be calculated from the 
dynamics of the situation by successive approximations.

The choice of the ellipse as a starting-point for developing the lunar theory is 
understandable. What is sometimes called ‘the elliptical inequality’ — the inequality 
dependent on the eccentricity of the Moon’s orbit about the Earth — is by far the 
largest of the inequalities in the Moon’s motion. It leads to a departure of the Moon 
from its mean longitude by as much as ± 6°17′. The next greatest inequality is the 
Variation. Its maximum value, which occurs in the octants of the syzygies, is ± 40′, 
only 10.6% as large as the elliptical inequality. 

Taking the ellipse as starting-point, however, was problematic, because it com-
pletely ignored the Sun’s force on the Moon, which was over twice the Earth’s force 
on the Moon. In circular orbits, Newton had shown that the gravitational force toward 
the central body is as the radius of the orbit and inversely as the square of the period.7 
Let the Moon’s orbit about the Sun and its orbit about the Earth be treated as circles, 
which they approximately are. The ratio of the Sun’s to the Earth’s gravitational 
action on the Moon is approximately as the mean ratio of the Earth–Sun distance to 
the Moon–Earth distance, and inversely as the square of the ratio of the length of the 
year to the length of the month. Astronomers determined the distances in terms of 
horizontal parallaxes, the angles subtended at the Sun and Moon by the Earth’s radius. 
The Moon’s horizontal parallax was known to be 57Ð arc-minutes, implying that the 
Moon’s mean distance was about 60 times the Earth’s radius. The Sun’s parallax had 
generally been over-estimated (and the Earth–Sun distance under-estimated) up to 
the 1760s, but Venus transits in the 1760s led to a value of about 9 arc-seconds;8 this 
value was used in the “Réflexions” of 1766 and in Leonhard Euler’s lunar theory of 
1772. To three decimal places the present-day value is 8.794 arc-seconds. Given Eul-
er’s values for these parallaxes and the ratio of the sidereal month to the year (about 
1/13.369), the Sun’s gravitational action on the Moon is found to be 2.18 times the 
Earth’s action on the Moon, so that the Earth’s force is less than a third of the total 
force exerted on the Moon.9 Yet a computation by successive approximations calls 
for capturing at each stage more than half of the quantity remaining to be found; 
otherwise the process is in danger of failing to converge. Since the Earth-focused 
ellipse leaves out of account more than º of the total force acting, it was a question-
able beginning for calculating the Moon’s motion. 

The problematic character of this starting-point showed itself in the earliest efforts 
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to compute the motion of the Moon in algebraic form. Leonhard Euler, Alexis Clairaut, 
and Jean le Rond d’Alembert, the first mathematicians to undertake this computation, 
followed somewhat different calculative routes, but each started from a solution of 
the two-body problem which left the Sun’s force initially out of the account. In 1747 
all three reported finding only about half the observed motion of the Moon’s apse. 
They undoubtedly regarded the apsidal motion as a sensitive indicator of the nature 
of the perturbing force. Thus if one assumes that the gravitational force varies as a 
power of the distance, then, as Isaac Newton showed in Proposition 45 of Book I of 
the Principia, the motion of the apse determines the power of the distance that the 
force is proportional to, and vice versa. Euler and Clairaut — influenced by prior (and 
different) metaphysical and epistemological assumptions — concluded that Newton’s 
law was inexact.10 D’Alembert believed Newton’s law to be exact, but proposed that 
some force besides gravitation, perhaps a magnetic force, was also acting. 

Then in 1749 Clairaut carried out a second-order approximation. In his first-order 
solution of the differential equations, he had been able to identify the larger terms 
with an expression for a rotating ellipse: 

Here r is the radius vector from Earth’s centre to Moon’s centre, e is the eccentricity 
of the ellipse, k is called the parameter of the ellipse, ϕ is the Moon’s angular distance 
from a fixed line, and m is a constant whose difference from unity gives the motion 
of the apsidal line or major axis of the ellipse. From his identification of expressions 
in his solution with the constants in the above equation, Clairaut was able to evalu-
ate the constants k, e, and m. The initial solution of the differential equations for 1/r 
contained, besides the term expressing the rotating ellipse, three much smaller terms. 
To obtain a second approximation, Clairaut substituted the first-approximation value 
for 1/r, including the three much smaller terms, back into the differential equations, 
and then re-determined the constants k, e, and m. The new value of m turned out to 
include most of the missing apsidal motion. By an independent calculative route, 
Leonhard Euler confirmed that the inverse-square law was not in error.11 The difficulty 
had been one of slow convergence. But, even when the second-order approxima-
tions were included, Clairaut’s lunar theory still failed to locate the Moon precisely 
enough for determining the longitude at sea to within a degree. Slow convergence 
was apparently a pervasive difficulty in the development of lunar theory.  

Leonhard Euler pondered this fact. He believed that a similar difficulty had emerged 
in computing the motions of the planets. Writing on the inequalities in the motions 
of Jupiter and Saturn in 1748,12 he had introduced trigonometric series to express the 
perturbing forces — a major innovation. However, his derivations failed to account 
for puzzling variations in the motions of these two planets. He attributed this failure 
to slow convergence of his trigonometric series. This attribution was a mistake — as 
would become clear from P. S. Laplace’s discovery in 1785 of the quite different 
source of the anomaly in the motions of Jupiter and Saturn.13 Throughout the 1760s 
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Euler viewed slow convergence as the major analytical difficulty in celestial mechan-
ics, and he sought radical measures to cope with it. 

Thus, in 1762 Euler proposed calculating perturbations both of planets and the 
Moon by numerically integrating the differential equations, starting from observed 
positions and velocities. No series approximations would be employed, and no 
attempt would be made to obtain a theory valid for all time.14 In a paper of 1763, he 
showed how accurate initial conditions could be obtained through an application of 
the calculus of finite differences to a series of observations.15 These methods were 
later applied to comets, for instance by Laplace. At the present day Jet Propulsion 
Laboratory computes the Moon’s positions by numerical integration, with initial 
conditions derived by finite differences in the manner Euler proposed.

In the “Réflexions sur la Variation de la Lune” of 1766, Euler undertook to treat the 
inequality known as the Variation separately from the other inequalities of the Moon.16 
As justification he stated that, in the absence of a solution of the general three-body 
problem, the surest way of perfecting the lunar theory was to simplify the question 
as much as possible. Lunar theorists since Newton had already tried abstracting from 
both the inclination of the Moon’s orbit to the ecliptic and the eccentricity of the 
Earth’s orbit. According to Euler, the other inequalities to be dealt with were those 
dependent on the angular elongation of the Moon from the Sun (the Variation), and on 
the eccentricity of the Moon’s orbit (the so-called ‘elliptic inequality’). Inequalities 
deriving from the Moon’s inclination and the orbital eccentricity of the Earth could be 
dealt with later; they were small enough to be considered separately from each other 
and from the other inequalities. The “Réflexions” proposed carrying this simplification 
one step farther, by abstracting from the eccentricity of the lunar orbit.

Why did Euler choose the inequality of the Variation over the ‘elliptic’ inequality 
as the first problem to be coped with? He does not spell out his thinking here. Pos-
sibly he had come to see the Variation as more nearly the gist of the lunar problem. 
It was a simplified form of the three-body problem. With the lengths of the year and 
the month determined — they were among the best-known constants of astronomy 
— this problem of finding a periodic orbit was completely determinate; it had a 
perfectly definite solution, though reachable only by successive approximations. 
By contrast, starting from the lunar eccentricity meant leaving the effect of the Sun 
entirely out of account. Moreover, the eccentricity was variable, and measuring its 
mean value was difficult. Because the lunar problem was a three-body problem, it 
had to involve the Variation. But it did not have to involve eccentricity. 

The solution curve for the Variation problem is depicted in Figure 1, with the fol-
lowing obvious distortions: the flattening of the orbit is exaggerated, and so is the size 
of the lunar orbit relative to the Earth–Sun distance (a solar parallax of 9 arc-seconds 
makes the mean radius of the lunar orbit only 1/390th of the Earth–Sun distance). In 
the figure, S is the Sun, E the Earth, and abcd the path of the Moon relative to the 
Earth. The flattening of the oval abcd can be understood as follows. When the Moon 
is at a, it is more accelerated toward the Sun than the Earth is, because it is closer 
to the Sun; when it is at c, it is less accelerated toward the Sun than the Earth is. In 
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each of these cases, the difference in solar force has the effect of slightly reducing 
the Moon’s acceleration toward the Earth. The Moon’s path at a and c is therefore 
less incurvated toward the Earth. As a result, the diameter ac of the oval is a little 
shorter than the diameter bd. Newton found the ratio of these two diameters to be 
69:70. Euler’s numerical results in the “Réflexions” agree with this value.

The orbit of the Moon about the Earth represented in Figure 1 is the simplest case 
of a Moon that we could have — a Moon seen by Earthlings to be going round the 
Earth. But the Moon’s path must be continuously incurvated toward both the Sun 
and the Earth. To adjust our imaginations to this fact we must go beyond a static 
diagram like Figure 1 and take account of the relative motions of the Moon with 
respect to both Sun and Earth. The Moon’s motion from a to b (from New Moon to 
First Quarter) requires 7.4 days on average. At the Sun, the path thus executed sub-
tends an angle of 8.8 arc-minutes, about a seventh of a degree. But during the same 
7.4 days, the whole Earth-Moon system moves through about 7°.3 about the Sun, an 
arc fifty times greater. The Moon’s motion relative to the Earth adds to or subtracts 
from the mean motion of the Earth-Moon system about the Sun up to a fiftieth, and 
it adds to or subtracts from the mean Moon–Sun distance about 1/390th. The paths 
of both Earth and Moon are always concave to the Sun, but the two bodies weave in 
and out as first one and then the other is closer to the Sun.

The Variation, more than any of the other inequalities in the Moon’s motion, may 
have triggered in Euler a sharp focus on the mathematical complexity presented 
by the Moon’s motion. As stated earlier, the Variation Curve is determinate given 
the lengths of the month and the year, but its precise shape is only progressively 
knowable, by the extraction of successive approximations. Newton approximated it 
with an ellipse,17 but it is not an ellipse or any other oval with a finitely expressible 
formula. In this respect it resembles the lunar theory as a whole: the exact character 
of the motion is hidden in the dynamics. These realizations can have led Euler to his 
claim that, if the problem of the Variation were solved perfectly, no major difficulties 
would remain in developing the lunar theory.   

In the “Réflexions” of 1766 Euler treated the Variation as a completely periodic 
motion. He let η represent the varying angular elongation of the Moon from the Sun, 
and let dθ/dt represent the Sun’s angular motion with respect to the Earth, assumed 
uniform. The rate of motion dη/dt is slightly variable but nearly constant. Euler gave 

FIG. 1
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the mean value of dη/dθ as n = 12.3708, and set 

This was a way of ordering the quantities contained in dη/dθ with respect to small-
ness. In a similar way, he signified the mean Moon–Earth distance by b, and the 
actual Moon–Earth distance by bu, where

Finally, he set another quantity in the differential equations, involving the ratio of the 
Sun’s and Earth’s gravitational forces, equal to a series in 1/n, and labelled it m:

He substituted all three expressions back into his differential equations. These equa-
tions represented the Sun’s and Earth’s forces producing accelerations in the Moon’s 
motion. He then obtained expressions for P, Q,…, p, q,…, α, β,…, etc., by setting 
the resulting coefficients of 1/n, 1/n2, etc., equal to zero. To fourth-order terms in 
1/n, Euler found

Euler’s 1/n is the same as Hill’s m, the ratio of the Sun’s mean motion to the Moon’s 
mean synodic motion, or of the month to the year.18 Euler also obtained bu, the 
Moon–Earth distance in the Variation Curve, as a function of η. 

The method of the “Réflexions” appears to have been a stepping-stone to Euler’s 
method in his third lunar theory, the Theoria motuum lunae, nova methodo pertractata 
of 1772. Here he treated all the inequalities of the Moon as proportional to succes-
sive powers and products of small parameters. It was this strategy that Hill seized 
upon when, disillusioned with earlier algebraic ways of developing the lunar theory 
because of slow convergence, he began looking for a new way of proceeding. Thus, 
in the introduction to his essay of 1878, “Researches in the lunar theory”,19 Hill 
proposed dividing the periodic developments of the lunar coordinates “into classes 
of terms in the manner of Euler in his last lunar theory”, and treating first separately 
and then conjointly the following five classes of inequalities:

1. inequalities dependent on the ratio of the mean motions of the Sun and 
Moon,
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2. inequalities proportional to the lunar eccentricity,
3. inequalities proportional to the sine of the lunar inclination,
4. inequalities proportional to the solar eccentricity, and
5. inequalities proportional to the solar parallax.20

Of the project thus set forth, Hill was able to complete his analysis only of the first 
class.

Like Euler, Hill used rotating rectangular coordinates. But whereas Euler made 
them rotate with the mean speed of the Moon, Hill made them rotate with the mean 
speed of the Sun. 

Although Euler’s “Réflexions” paper, if Hill had read it, would have suggested 
to him the desirability of obtaining an exact representation of the Variation Curve, 
Hill’s decision to seek such a representation appears to have been triggered rather by 
the failure of his love-affair with Delaunay’s method of treating the lunar theory.21 
Delaunay’s method, which Hill began studying in the 1870s, at first aroused his 
enthusiastic allegiance. In an article published in 1876, he introduced Delaunay’s 
differential equations to his American colleagues. His first sentence reads:

The method of treating the lunar theory adopted by Delaunay is so elegant that it 
cannot fail to become in the future the classic method of treating all the problems 
of celestial mechanics.22

We can guess what aroused Hill’s enthusiasm. Delaunay’s method was systematic 
and transparent. It was sophisticated in making use of post-Lagrangian refinements in 
dynamics. For Hill, it must have stood in sharp contrast with Hansen’s lunar theory, 
which had been adopted both in Great Britain and France, beginning in 1862, as the 
basis for the nautical almanacs.

Hansen’s theory was ostensibly based on the law of gravitation alone. From the 
inception of the Nautical almanac in 1767, a large measure of empiricism had entered 
into the tables used in computing the lunar ephemerides for the Nautical almanac. 
Hansen’s theory, claiming to be free of such empiricism, was in that respect epoch-
making. But it was a numerical theory. Numbers were substituted for the arbitrary 
constants at an early stage. Therefore, if the theory failed to agree with observation 
(and discrepancies soon appeared), it was difficult or impossible to discover the source 
of the discrepancy. The derived numbers effectively concealed the route by which the 
tables had been derived. Hansen’s theory had required twenty years to construct in 
the first place, and to correct it responsibly would have required beginning all over 
again. A literal or algebraic theory like Delaunay’s was clearly preferable because 
each of its results was traceable to its theoretical roots. 

But soon Hill discovered a serious difficulty with Delaunay’s method as applied to 
the Moon. It was incurably afflicted with slow convergence. Starting from the two-
body, elliptical solution for the Moon’s motion, Delaunay had carried the successive 
approximations farther than ever before. But he found that approximations taken 
to the ninth order of small quantities were still insufficient to match the precision 
currently attainable in observations. Consider, for instance, the inequality called the 
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evection, which depends on e, the eccentricity of the lunar orbit, and on m = n′/n, the 
ratio of the Sun’s mean motion to the Moon’s mean motion.23 The coefficient of the 
evection, when derived analytically, consists of a series of terms. As the first term of 
the series Delaunay obtained (15/4)me, and as the 9th-order term,

Here m ≈ 1/13.369, and e ≈ 1/18.349. The ninth-order contribution proves smaller 
than unity, but it is not much smaller than the 8th-order term; and the sum of the terms 
Delaunay calculated failed to determine enough significant figures in the coefficient to 
match the precision of modern observations. This difficulty recurred in the coefficients 
of other inequalities. The successive contributions of the higher-order terms were 
factored by top-heavy numerical fractions and by m raised to high powers. Wherever 
slow convergence made its appearance, so also did the parameter m.

Hill concluded that Delaunay’s project, grand in conception and initially promis-
ing in precision, had failed. The convergence was too slow and too consuming of 
human time and labour to yield a result of the precision desired. (Whether the series 
were “convergent” in the strict mathematical sense was unknown, but the immediate 
issue here was whether a precise enough result could be extracted in a responsible 
way.) This failure provoked Hill to turn back to Euler and take up the construction 
of a new lunar theory on the basis of the Variation Curve.

As indicated earlier, Hill originally planned to compute all five of the classes of 
inequality that Euler had listed. He had to abandon this project when Simon New-
comb, superintendent of the U.S. Nautical Almanac Office from 1877 to 1897, asked 
him to develop the theories of Jupiter and Saturn, a task that absorbed Hill’s time 
and effort throughout the decade preceding his retirement in 1892. The only part 
of his plan that he completed was that given by his two papers of 1877 and 1878, 
relating to the Variation. 

In what follows we outline what Hill accomplished in those two papers. As origin 
for his coordinate system he chose the Earth’s centre, with x-axis passing through 
the Mean Sun, and y-axis also in the ecliptic, at right angles to the x-axis. The Mean 
Sun is a point moving around the ecliptic with a constant angular speed n′, equal to 
the true Sun’s mean speed. Hill posited a moon confined to the ecliptic and so with-
out latitude, and having a mass too small to influence the motion of the Earth (the 
mass of the real Moon is less than 1/81 of the Earth’s mass). To derive differential 
equations for this fictive moon’s motion, he used an algorithm due to Lagrange (we 
omit a description of it, except to say that it starts from expressions for the moon’s 
kinetic and potential energy). The result was 
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Here µ is the Earth’s mass, and is the distance from fictive moon to the 
Earth. 

The coordinates x, y specify the position of the fictive point-moon in the coordinate 
system just described. The equations do not tell us what path this moon will move 
in, unless we stipulate initial values for the position and velocity. Through any point 
in the x-y plane, an infinite number of possible trajectories pass, each in accord with 
the restrictions imposed by the above equations. If we stipulate both position and 
velocity, the path that our fictive moon must follow is uniquely determined.

In solving these equations, Hill chose expressions for x and y such as to yield the 
particular solution that is the Variation Curve:

Here i is an integer running from minus to plus infinity, ν is the Moon’s mean synodic 
speed (2π radians per 29.5305889 days, or 0.2127687 radians/day), and t is the time 
measured from t

0
 when the moon passes through conjunction with the Mean Sun. The 

product of ν and (t – t
0
) yields the angle about the Earth from New Moon to the Moon’s 

position on the orbit abcd. The choice of the odd integers (2i + 1) as multipliers of 
ν(t – t

0
) guarantees that when ν(t – t

0
) is π/2 or an odd integral multiple thereof, x 

and dy/dt will both be zero, and when ν(t – t
0
) is zero or π or an integral multiple of 

π, y and dx/dt will both be zero; thus the orbit where it crosses the x-axis and y-axis 
will do so perpendicularly — the conditions necessary and sufficient for a periodic 
orbit. To obtain the values of the coefficients a

i
, Hill substituted the expressions pro-

posed above for x and y into the differential equations, and proceeded by successive 
approximations to determine the ratios of the successive a

i
 to a

0
. This way of solving 

differential equations is an example of what is called ‘the method of undetermined 
coefficients’. The rate of convergence that Hill obtained is impressive:24

The constant a
0
 depends on the mass µ of the Earth and mean motion n of the Moon: 

The constants thus computed, when substituted back into Hill’s expressions for 
x and y, determine the shape of the Variation Curve. The derivatives dx/dt and dy/dt 
determine the motion of the fictive moon upon that curve. With his solution for the 
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Variation in hand, Hill wanted to find out what the apsidal motion would be if a tiny bit 
of eccentricity were injected into the Variation Curve. This curve, though not a circle, 
was not eccentric: it was symmetric with both the x- and y-axes. If x and y, initially 
determined so as to fit the Variation Curve, were allowed to receive increments, δx 
and δy respectively, small enough so that their squares could be neglected, but such 
as to cause the curve to deviate from its original symmetry, the altered curve would 
have a perigee and apogee (maximal departures from the Variation Curve toward or 
away from the Earth’s centre), and these points would move because the introduction 
of δx, δy violates the conditions for periodicity originally imposed. Could the rate at 
which the perigee moves be determined?

Hill addressed this question in his lunar paper of 1877, “On the part of the motion 
of the lunar perigee which is a function of the mean motions of the Sun and Moon.25. 
He first set out the differential equations used in deriving the Variation as follows:

     (1)

Here the partial derivatives express the forces — the gravitational forces and also the 
apparent forces due to the choice of rotating coordinates. These equations admit of 
an integral, as first shown by C. G. J. Jacobi in 1836.26 Jacobi’s integrating factors 
were, for the first and second equations respectively, 

where n′ is the mean angular speed of the Sun. The sum of the two products could 
be integrated, yielding 

 (2)

Here C is a constant of integration. Hill called (2) the Jacobian integral.
Let x

0
 and y

0
 designate the coordinates in the Variation Curve, and let Equations 

(1) be written, first with x
0
, y

0
 replacing x, y, then with x

0
 + δx, y

0
 + δy replacing x, y. 

The difference between the two results yields the differential equations for δx, δy:

(3) 

The subscript zero attached to the expressions for H, K, J signifies that these partial 
derivatives are to be evaluated in the coordinates x

0
, y

0
 of the Variation Curve.

Hill’s process leading to a solution for (3) was complicated, and we shall do no 
more than indicate the main steps.27 He first showed that δx = F, δy = G is a solu-
tion that defines δx, δy in terms of the variables of the Variation Curve. This solution 
reveals nothing about departures from that curve. It permitted, however, a reduction 
of the order of the problem, always an advantage in solving differential equations. 
Hill effected this by introducing new variables ρ, σ such that δx = Fρ, δy = Gσ. The 
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result was a second-order differential equation containing a first-order term (propor-
tional, say, to dρ/dt) and also a term proportional to ρ. To eliminate the first-order 
term, Hill introduced a new variable w in accordance with the equations 

He thus reduced the equation to the form

(5)

Here Θ turns out to be given by an infinite series  where 
τ denotes the difference between the Moon’s mean longitude and the Sun’s mean 
longitude, and the θ

i
 denote constants definable in terms of m = n′/(n – n′). If Θ were 

equal to the constant θ
0
, Hill tells us that the complete integral of (5) would be

Here c has been put for θ
0
, and  where ε stands for the 

base of natural logarithms, and the equivalence of the exponential to the trigono-
metric terms is a famous result of Euler’s. According to Hill, if additional terms of 
Θ are included, the effect is to modify the value of c and add to w new terms of the 
form  

With the idea of using the method of undetermined coefficients to obtain a solution 

of (5), Hill proposed a particular integral, . Here the b
i 
are constants to be 

determined, and i takes all integral values from –∞ to +∞. Substituting the particular 
integral into (5), he got the equation

  (6)

This holds for all integral values of j, positive and negative, and thus yields an infi-
nite number of homogeneous linear equations, each equation containing an infinite 
number of terms. The conditions (6) determine the ratios of all the b

i
 to one of them, 

for instance b
0
, which could be taken as the arbitrary constant. They also determine c, 

which is the ratio of the synodic to the anomalistic month (the time for the Moon to go 
from perigee back to perigee). To exhibit the properties of the equations more clearly, 
Hill wrote out a few of them in extenso, using the symbol [i] = (c + 2i)2 – θ

0
:

If the Equations (6) had been finite in number, with each equation consisting of only 
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a finite number of terms, the condition of their being solved simultaneously would 
have been that their determinant be equal to zero.28 Hill assumed that this condition 
would still apply when the equations were infinite in number. Using summations 
he may have obtained from Euler,29 Hill famously solved the infinite determinant 
resulting from the infinity of Equations (6) obtained when all the b

i
 are eliminated 

save b
0
. He thus found for c the value 1.071583277416012, which he believed to be 

exact to nearly the 15th decimal.
Now the ratio of the motion of the perigee to the sidereal mean motion of the 

Moon is given by

   
Hill’s values for c and m gave this ratio as 0.008572573004864, exceeding the value 
given by observation, viz. 0.008452, by 1.43% or about 1/69th. Hill had anticipated 
that his result would be too large. His derivation assumed a zero inclination of the 
Moon’s orbit to the ecliptic; therefore, since the inclination reduces the effectiveness 
of the Sun’s action, he had in effect introduced more solar action than is actually 
exerted.

Hill’s purpose had been 

… to compute the value of this quantity [the Moon’s apsidal motion], so far as 
it depends on the mean motions of the sun and moon, with a degree of accuracy 
that shall leave nothing further to be desired.

His result showed that if the Variation Curve were inoculated with just a tiny amount 
of eccentricity, deranging slightly the symmetry of the curve and the periodicity of 
the fictive moon’s motion upon it, then the resulting curve would acquire an apse, 
or maximal departure from the Variation Curve, and this apse would move forward 
with 101.43% of the real Moon’s apsidal motion. If the fictive moon’s orbit were 
inclined to the ecliptic to the same degree as the real Moon’s orbit, most or all of the 
extra 1.43% could be expected to disappear.

Conclusion and Epilogue 

In 1747 Euler, Clairaut, and d’Alembert obtained in their first-stage calculation only 
about one-half the apsidal motion of the real Moon. Their successors before Hill 
fared no better in their first-stage calculations, and even with multiple successive 
approximations did not come as close as Hill to the apsidal motion of the real Moon. 
Thus the eccentric ellipse — used as a first approximation by all our lunar theorists 
except Euler and Hill — did poorly as a starting-point for computing the apsidal 
motion, while Hill’s Variation Curve did well. Indeed, remarkably well.

Could other curves do as well or better? Certainly we would expect that curves 
obtained by “correcting” the Variation Curve so as to achieve a still closer approxi-
mation to the orbit of the actual Moon would do as well or better. Such correcting 
was precisely what E. W. Brown did in calculating the remaining four of the five 
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classes of inequality that Euler had listed, the departures from the Variation Curve 
that are proportional to the small parameters e, γ, e′ and a/a′ and to their products 
and powers. To verify the results of his calculations, Brown compared them with ‘the 
variation’ of the Variation Curve (that is, the differential of the algebraic expression 
of this curve).30 The Moon’s actual path departs from being a projection of the Vari-
ation Curve only ‘infinitesimally’. 

Thus Euler, in his claim about the importance of the Variation in solving the lunar 
problem, was right, but he can hardly have known that he was right. In expressing his 
claim as a dare, he did well rhetorically. But was the proof in the pudding? That is, did 
the Hill-Brown theory fit the observed motions of the Moon with near exactitude?

Not immediately. The Moon was accelerating at a somewhat greater rate than plan-
etary perturbations implied, and it was also subject to fluctuations that could not be 
derived in any fashion from the law of gravitation. This topic would require another 
paper, but the reader will want to know how the issue was at last resolved. The extra 
acceleration could be explained as due to the slowing of the Earth’s rotation caused 
by tidal friction, and the fluctuations could be due to random changes in the Earth’s 
angular momentum, produced by changes in sea level and atmospheric pressure, 
electromagnetic coupling or de-coupling of the Earth’s core and mantle, and other 
causes. Brown was convinced that the Hill-Brown theory as completed by himself 
gave an accurate account of the gravitational effects on the motion of the Moon, but 
for some years entertained the possibility that other forces (possibly magnetic) were 
acting on the Moon. By 1920 the writings of J. K. Fotheringham and Harold Jeffreys 
persuaded him that the extra acceleration and fluctuations were more plausibly attrib-
utable to changes in the Earth’s rotation.31 In 1926 he published an extended study 
of the evidence for this, along with speculations about the possible physical cause 
of the fluctuations.32 The first firm confirmation of the fact that the Earth’s rotation 
was varying came in 1939, with H. Spencer Jones’s demonstration that the Moon’s 
acceleration is mirrored by accelerations in the motions of the Sun and Mercury.33 
Full confirmation came after 1955 when atomic clocks were introduced, replacing 
the Earth as the astronomer’s clock. From then till now, the Earth’s variable rotation 
has remained a lively topic of ongoing geophysical research.34
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KEPLER AND BRUNO ON THE INFINITY OF THE UNIVERSE 
AND OF SOLAR SYSTEMS 

MIGUEL A. GRANADA, University of Barcelona

Introduction

When Kepler published his De stella nova in pede Serpentarii in 1606, four models 
of the universe existed. The first two are familiar: 

(1) The traditional geocentric worldview of Aristotelian and Ptolemaic origin, with 
a finite sphere of fixed stars in motion enclosing the visible universe.1 To this we 
could add the geoheliocentric conception of those authors who believed in a finite 
universe and conceived of the sphere of fixed stars as finite, e.g. Tycho Brahe and 
Helisaeus Roeslin. 

(2) The new (or, according to Kepler, renewed) heliocentric worldview, as formulated 
by Copernicus, also with a finite sphere of fixed stars enclosing the universe, not-
withstanding the fact that this sphere begins at an immense distance from the sphere 
of Saturn and is totally unmoved. Indeed, after considering the possibility of this 
sphere of fixed stars being “infinite outwards” (in chap. I, 8 of his De revolutionibus), 
Copernicus had passed the problem of the infinite or finite extension of this sphere 
to the natural philosophers, accepting in his work a finite universe or a finite sphere 
of fixed stars. This was also the position of the other two German Copernicans in the 
final years of the sixteenth century, Michael Maestlin and Johannes Kepler. 

However, these two basic conceptions become four, if we take it that the sphere 
of fixed stars is actually infinite (or at least indefinitely open) outwards:

(3) The geocentric authors, who attributed the daily motion to the Earth, e.g. Raymarus 
Ursus with his individual conception of the geoheliocentric world-system, published 
in 1588 in his Fundamentum astronomicum. This could also be the case with William 
Gilbert’s De magnete (London, 1600), if we accept that in this work Gilbert did not 
yet adhere to the annual  motion of the Earth. In a limited and loose sense, it could 
also be the case with Francesco Patrizi, who in his Nova de universis philosophia 
(Ferrara, 1591) conceived of the sphere of fixed stars (though endowed with motion) 
as vastly extended outwards, although this extension was finite and limited from 
‘above’ by the superior region of the Empyrean. Similar to Patrizi’s conception was 
that of the Czech physician Johannes Jessenius in his Zoroaster (Wittenberg, 1591). 
Interestingly for us, Jessenius was personally known to Kepler, since he had mediated 
in the settling of differences between Kepler and Tycho concerning the terms of their 
professional collaboration in Prague during the final years of Tycho’s life.2

(4) This solution was also (and more clearly) available for Copernicans, who needed 
only to take seriously the possibility touched on (but abandoned) by Copernicus of 
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an indefinitely extended sphere of fixed stars. As is known, this possibility was all 
the more credible, since Copernicus had put this sphere at rest by attributing without 
hesitation all the apparent motions of the stars to the Earth. This step was taken by 
the Englishman Thomas Digges in his A perfit description of the celestiall orbes 
(London, 1576), although he identified this infinite stellar region with the divine 
Empyreum or theological heavens.3 Most probably, Kepler did not know this work, 
which was written in English. Nevertheless, this conception was known to him through 
the formulation by William Gilbert in his De magnete, if we accept that Gilbert had 
already adopted the annual motion of the Earth. 

Common to all these representations was, however, the principle that there was 
only one planetary system, namely our system, centred on the Sun or on the Earth. 
Thus, the Sun was very different from the fixed stars, which lacked planets and also 
had a different ontological status: much brighter and greater than the Sun for Digges,4 
or inversely for Kepler. In any case, all these cosmic representations had one point 
in common: a profound heterogeneity between the unique planetary region and the 
region (finite, indefinite or actually infinite) of fixed stars. 

To these four visions of the cosmos we can add a fifth, proposed by the Italian 
philosopher Giordano Bruno (1548–1600) as an original expansion of the helio-
centric planetary system to an infinite and homogeneous universe. After an initial 
presentation in the Italian dialogues published in London in 1584, Bruno offered a 
complete exposition of his cosmological and metaphysical views in several Latin 
works printed in Germany, the most important of them being the following: Acro-
tismus camoeracensis and Articuli adversus mathematicos, both printed in 1588, 
in Wittenberg and Prague respectively; and De triplici minimo et mensura and De 
immenso et innumerabilibus, both issued in Frankfurt in 1591. All these works 
presented an infinite and homogenous universe, where infinite planetary systems 
(called by Bruno “synodi ex mundis”) coexisted, each of them separated from 
the adjacent ones by a vast extension of space filled with pure air or ether. Every 
planetary system had a central sun or star around which a number, more or less 
great, of planets (called by Bruno “earths” or “waters”) and of comets (intended 
as a variety of planets) moved, each with its own intelligent soul, as a principle of 
motion. In this universe, conceived as the necessary production and expression of 
God’s infinite power and goodness, the centre was everywhere and the circumfer-
ence or periphery nowhere. Thus, not only were our Earth and man totally deprived 
of any prerogative or special finality; our planetary system with the “central” Sun 
was entirely indifferent with respect to the infinite number of planetary systems or 
“synodi ex mundis”.5 To sum up, in Bruno’s infinite and everlasting universe there 
was no place for a providence of God supernaturally directed to human redemption. 
Mankind was reinstated in nature and eschatology refuted. The only way to God was 
by means of infinite nature and its knowledge through philosophy or science.
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1. Kepler, Bruno, and Wackher von Wackenfels

When Johannes Kepler (1571–1630) published in 1596 his Mysterium cosmographi-
cum, he knew neither Bruno’s cosmology nor his metaphysics and theology. Kepler’s 
cosmological and religious intention, although Copernican too, was notwithstanding 
completely different: Kepler’s universe, although created by infinite God, was rigor-
ously finite, with the unique Sun in its absolute centre and the immobile stars in the 
spherical periphery. The six planets (Earth and Moon formed a unity, as is known) 
moved around the Sun at distances proportional to their respective periods and thus 
they formed the unique planetary system, whereas the stellar periphery was at an 
enormous distance from the largest planetary revolution (that of Saturn), as required 
by Copernicus in order to explain the failure to detect annual parallax in the stars. 
Moreover, Kepler highlighted “the splendid harmony of those things which are at 
rest, the Sun, the fixed stars [the two immobile points of reference as centre and 
periphery] and the intermediate space [through which the planets moved] with God 
the Father, and the Son, and the Holy Spirit”. Thus, the universe, although finite, 
had a “resemblance” (similitudo) to the divine Trinity,6 whereas for Bruno, whose 
theological conception was rigorously monistic or unitarian, the infinite and eternal 
universe was simply the Son or “unigenita natura”.7

Nevertheless, there was some similarity between the projects of Bruno and Kepler. 
Both conceived of Copernicanism as a restoration of “ancient wisdom”, mainly 
Pythagoreanism, whose authentic cosmological doctrines (e. g., the counter-earth 
as the Moon and the central fire as the Sun) had been misunderstood and misrep-
resented by Aristotle. Both intended to develop Copernicanism by recovering still 
undisclosed Pythagorean truths: thus, for Kepler, the application of the five regular 
solids to the number of the planets and their distances to the Sun; for Bruno, the 
conception of comets as permanent heavenly bodies or his speculations on the motion 
of the Sun in the centre of its system.8 One decisive difference, however, in their 
respective approaches to this question was that Kepler intended to interpret ancient 
Pythagorean cosmology in the light of his own Copernican cosmology, whereas 
Bruno intended to read Copernican cosmology in the light of his own understanding 
of ancient Pythagoreanism.

If Kepler did not know of Bruno’s cosmological ideas and their theological import 
before and immediately after the publication of the Mysterium cosmographicum, he 
soon learned of them in the first years of the seventeenth century. Kepler’s source 
was not in fact William Gilbert’s De magnete (printed in 1600), although he later 
associated in his De stella nova of 1606 Gilbert’s views on the indefinite extension 
of the sphere of fixed stars — more akin to Raymarus Ursus’s views as expressed in 
the Fundamentum astronomicum from 1588 — with those of Bruno. Rather, Kepler 
was indebted to his correspondent Edmund Bruce (dates unknown) and to his friend, 
the Imperial Counsellor Johann Matthäus Wackher von Wackenfels (1550–1619), 
who was also living in Prague. 

In the letters he wrote to Kepler from Italy in 1602–3, Edmund Bruce did not 
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mention Bruno. However, scholars agree that Bruce was adopting Bruno’s funda-
mental tenets, when he presented to Kepler his own cosmology in the letter of 5 
November 1603: 

I believe that there are infinite worlds, each of them, however, being finite, just 
as [that] whose middle point of the planets is the centre of the Sun. As with the 
Earth, the Sun does not rest, since it revolves most swiftly in its place around its 
own axis; the other planets, among whose number I reckon the Earth, follow this 
movement, each of them being slower proportionally to its increasing distance 
from the Sun. The stars are also moving like the Sun, but they are not carried 
around it by its force, because each of them is a Sun in a world that is not smaller 
than our own world of the planets. I do not think that the elementary world is 
exclusive to us and the only one existing, because air is also between those bodies 
which we call stars, and consequently fire, water and earth as well.... Planets 
receive their light from the Sun.9 

This letter is interesting also for Bruce’s closing request to Kepler to transmit it “to 
your Neighbour and my friend, whose answer I expect”.10 Bruce possibly has in mind 
Wackher von Wackenfels, whom he could have met in Italy some years before on 
the occasion of Wackher’s travelling to the country in 1598. Thus, in the first years 
of the seventeenth century, when he began building his physical astronomy, later 
published in the Astronomia nova of 1609, Kepler could have been exposed to the 
joint Brunian pressure of Bruce and Wackher.

It was, however, the Imperial Counsellor Wackher von Wackenfels, also living in 
Prague and in close relation with Kepler, who proves to be the most interesting person 
for us in tracing Kepler’s knowledge and reaction to the cosmology of Giordano 
Bruno. Wackher had travelled to Italy in 1598 in the company of Kaspar Schopp 
and knew of the particulars of Bruno’s death in Rome through the famous letter sent 
by Schopp to Konrad Rittershausen on the very day (17 February 1600) of Bruno’s 
execution. From Wackher, Kepler knew the details of the heroic death of Bruno, as he 
would recall to Johann Georg Brengger in 1608: “I learnt from Wackher that Bruno 
was burnt in Rome; he says that Bruno suffered his torment with steadfastness.”11 
Significantly, Kepler added that Bruno, according to Wackher, “affirmed the vanity 
of all religions, and transformed God into the world, into circles, into points”,12 
something that Kepler simply abhorred. 

Kepler found in the Imperial Counsellor an enthusiastic follower of Bruno’s cos-
mology and therefore a source for his own knowledge of Bruno’s conception of an 
infinite universe. This occurred through face-to-face discussions, as Kepler said from 
1606 onwards, and surely also through access to Bruno’s works owned by Wackher. 
We know that Wackher owned two dialogues by Bruno in Italian (the Spaccio and De 
l’infinito universo e mondi), which Kepler probably was unable to read, but he also 
owned the three philosophical Latin poems published in Frankfurt in 1591.13 

In the Strena seu De nive sexangula (published in 1611 and dedicated specifically 
to Wackher) we are informed that Kepler had access to Wackher’s library: “For I 



473Kepler and Bruno

saw recently in your house the volumes on unique and uncommon objects.”14 It is 
then a reasonable inference that Kepler could have consulted Wackher’s copies of 
De minimo and of De immenso et innumerabilibus.

We can also assume that Kepler had no difficulty in tracing and consulting a copy 
of Bruno’s Articuli adversus mathematicos, published in Prague in 1588 and dedicated 
to Emperor Rudolph II,15 or of the Acrotismus camoeracensis, published in Wittenberg 
in the same year. Bruno had sent a copy of the latter work to Tycho Brahe with a flat-
tering dedication, and it is not impossible that Kepler could have had access to it.16 It 
is noteworthy that Wackher’s copy of De immenso (now located in Olomouc National 
Library, Czech Republic; see Figure 1) includes marginal notes and underlinings in 
two most important chapters: the third chapter of the first book (entitled “Disposition 
of planetary systems in the universe. Difference between stars shining by themselves 
and by another. Why planets around other suns are not visible”) and the first chapter 
of the third book (“It is the intention of the Aristotelians and similar philosophers, 

FIG. 1. Wackher’s copy of Giordano Bruno’s De immenso (1591).
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as well as that of children, to start from principles; therefore I intend to teach them 
in the same order as Nature, the best of mothers, has educated us”).

According to Rita Sturlese, these marginal notes and underlinings to De immenso 
are from Wackher.17 I can neither affirm nor deny it; it is certain, however, that they 
testify to an accurate reading, first, of Bruno’s presentation of the salient points of 
his cosmology in chap. I, 3, and second, of Bruno’s derivation of the necessity and 
infinity of the universe from God’s immutability and infinite power in chap. III, 1. 
Restricting ourselves for the moment to the first of these two chapters, there are three 
points successively enumerated (1, 2, 3) and selected by Bruno for further consid-
eration: (1) whether the stars are made from the same substance and elements as 
the Earth (“vide num stellae sint eiusdem substantiae et ex iis conflentur elementis 
atque tellus”), (2) whether the Moon, Sun and all the stars are placed in the middle of 
the air or aether, as it is with the Earth (“num sicut Tellus in medio aere vel aethere 
consistit, ita et luna et sol et omnia astra”), and (3) whether the subject of the diurnal 
motion and of this other motion connected with the mutation of the poles and the 
solstitial and equinoctial points is the Earth itself (“num motus istius diurni atque 
variationis eius polorum, quam augium, solstitiorum, aequinoctialiumque punctorum 
mutatio consequitur, causa sit subjective in Tellure vel extra illam”; see Figure 2). 
More interesting for us, the reader underlines Bruno’s distinction of the “two genres 
of first bodies in the universe, namely suns and earths”18 (or planets) and draws in 
the margin the images of both (see Figure 2).

Immediately afterwards, the reader underlines the word fixae, which designates 
the first genre, with the additional implication that our Sun, when seen from their 
various places, would present the same magnitude and appearance as they present 
when viewed from our Sun;19 he also underlines that the planets surrounding our 
Sun with their proper motions constitute the second genre of bodies in the universe; 
and he underlines Bruno’s statement that all of them are placed “in one and the 
same space” (“omnia in uno eodemque aethereo spacio”). It should be noted that in 
these lines Bruno does not explicitly affirm that the other suns or fixed stars are also 
surrounded by planets, but this point had been previously established in the series 
of verses preceding the comment in prose, where we read: “Just as around this Sun, 
the Earth, the Moon, Mercury, Saturn, Venus and Mars, as well as Jupiter, wander, 
... so the same occurs around any other such body, because it is necessary by law of 
nature that the flames [the stars] take nourishment from the waters [the planets]”. In 
this line, shortly after the last passage underlined, Bruno’s text affirmed that “one 
genre of first bodies cannot subsist without the other” (“unum primorum corporum 
genus absque alio consistere minime posse”). Also without annotation was Bruno’s 
immediately preceding statement that no body can be said to attain the centre in the 
universe with more reason than any other body, because around any star infinite space 
extends in all directions, equally able to contain an infinity of heavenly bodies.

Thus, on this page Wackher (and possibly Kepler) could find the fundamentals 
of Bruno’s infinite and homogenous universe with an infinite plurality of solar sys-
tems, given the absolute homogeneity between the Sun and stars and the absolute 
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indifference of space. There is no doubt also that this page contains all the points 
constantly adduced by Wackher against Kepler in his personal adoption of Bruno’s 
cosmology.

2. Kepler’s Attack on Bruno in De stella nova (1606)

Kepler reacts for the first time to Bruno’s conceptions in 1606, in his De stella nova. 
He presents and rejects the infinite universe of Bruno in the course of four brief pages 
forming part of a discussion on the presumed pre-existence of the matter of the nova 
in the alleged immensely vast sphere of fixed stars.20 However, Kepler’s words suggest 
that he is repeating the arguments pro and contra advanced in previous face-to-face 
discussion between him and several followers of Bruno’s ideas.21 There is no doubt 
that Kepler means Wackher and his group, but the Latin word expressing the time 
of the discussion (‘olim’, ‘some time ago’) can refer both to a moment previous to 

FIG. 2. Bruno’s De immenso, I, 3, in Wackher’s copy.
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the appearance of the star in October 1604 or, more probably, to the months elapsed 
thereafter. It is important also to note that Kepler indulges (with some distaste) in a 
discussion of Bruno’s ideas on the infinite universe in a second place, and in the course 
of criticizing the explanation of the nova connected with an infinitely extended and 
heterogeneous sphere of fixed stars with the unique planetary system (World-systems 
3 and 4 outlined above). It is of interest, then, to present Kepler’s criticism of Bruno’s 
homogeneous universe within his more general refutation of the pre-existence of the 
nova in an infinite sphere of fixed stars.

It is also true, however, that Kepler had begun discussing the opinion of the theolo-
gian and astronomer David Fabricius (1564–1617), with whom he was at the time in 
intense epistolary exchange concerning his new elaboration of the theory of Mars.22 
Fabricius accepted the widespread opinion amongst theologians that God had ceased 
to create after the creation of the world. Consequently, the nova existed necessarily 
from the beginning of the world. Only the light with which it had become visible 
was new. Fabricius adduced also, after the nova in Cassiopeia, the similar and more 
recent cases of the star later known as Mira Ceti, which he himself had discovered in 
1596, and the new star in the constellation of Cygnus, which appeared in 1600. All 
of these objects testified to the existence of non-radiant stars, which were at precise 
moments lighted by God to signify good and evil to men.23 Fabricius adduced other 
similar facts from heavenly bodies (moved or unmoved) with periodical lighting, such 
as the Moon and comets (interpreted by him as perpetual bodies in heaven).24 

Kepler questioned the denial to God of new creations and objected that he could 
not see any difference between creating a body and illuminating it.25 He rejected also 
the analogy with the Moon and comets, and concluded that the attribution of pre-
existence and continuing existence outside illumination by God had no plausibility.26 
On the contrary, Kepler inclined to explain the nova as a complete novelty, both in its 
body and in its light.27 And of the two possibilities — a miracle produced by God’s 
absolute power outside the ordinary course of nature or a natural generation “by a 
certain force of heavenly nature”, according to an analogy and homogeneity with the 
sublunary region which extended generation and corruption to the heavens28 — Kepler 
inclined to the second. Thus, chap. XXII excluded the miraculous interpretation as 
implying the end of rational discussion,29 and gave priority to a natural explanation, 
which seemed to Kepler all the more appropriate since this nova was the third or 
fourth in the last thirty years and since Pliny and Tycho reported that there existed 
other testimonies in the past to such phenomena. Hence, Kepler presented in the fol-
lowing chapters the first attempt of a resulting programme of natural explanation of 
the novas according to a complex natural philosophy, taking as his point of departure 
Tycho’s conception of the Milky Way as the rough material for the nova of 1572, but 
expanding it to heavenly matter everywhere.30 

Nevertheless, in the middle of this development Kepler introduced, as chap. XXI, 
a digression whose aim was to criticize also a variant of Fabricius’s explanation: the 
nova, pre-existing both with its body and with its light in the deep vastness of the 
sphere of fixed stars, had descended, by God’s command, to the point at which it 
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was first noticed, and from there it returned progressively to its point of departure, 
diminishing continuously its magnitude until it disappeared from human view. 
Kepler did not mention any supporters of this interpretation, which attributed to the 
star in Serpentarius a circular motion, but he linked it with the similar interpretation 
of the nova in Cassiopeia as descending and mounting with rectilinear motion in 
the immense sphere of the fixed stars. Here again, no names are given, but we can 
suppose that Kepler referred to the examples of Cornelius Gemma, John Dee and 
Landgrave Wilhelm IV, discussed by Tycho in his Progymnasmata.31 As with Fab-
ricius, this variant too interpreted the phenomenon of the nova as an intervention of 
God’s absolute power with the same result of preventing any rational discussion.32 
Important, however, for our present discussion is the fact that this interpretation of 
both novas presupposes that the sphere of fixed stars extends outwards in an infi-
nite (or at least indefinite) altitude. Thus, we are confronted with World-systems 3 
and 4 (described above), a single planetary system centred on the Earth or on the 
Sun, with an ‘immense’ sphere of fixed stars. Kepler had insisted in his exposition 
on the flaws and arbitrary points of this conception, but he finally concluded that 
to affirm the infinity of the fixed stars was to enter into an inextricable labyrinth.33 
Accordingly, in order to provide for a more accurate explanation of the nova, it was 
necessary to deprive them of that ‘immensity’, a point that had been taken from the 
ancient philosophical schools with the argument or excuse that, once Copernicus had 
rendered motionless the region of the stars, this region could be infinite.34 Surpris-
ingly, however, Kepler proceeded to refute the infinity of the sphere of fixed stars 
by taking into account Bruno’s conception of the infinite universe, which was of a 
very different kind.  

Kepler begins by indicating the two main points of Bruno’s doctrine of an infinite 
universe: (1) its religious dimension, in so far as an infinite universe is the necessary 
production or expression of the infinite power of God, as Kepler could have found in 
De immenso, chap. III, 1, whose pages are heavily underlined in Wackher’s copy (see 
Figure 3);35 (2) the characteristic Brunian concept of the infinite universe, extremely 
different from that of Gilbert, Ursus or Digges, inasmuch as Bruno affirms not only the 
immensity or actual infinity of the stellar region as opposed to the finite central region 
of the unique planetary system, but also the infinity of an homogeneous universe in 
which there is no centre and no periphery (or the centre and periphery are everywhere) 
and every fixed star is a sun like our Sun and consequently is circumscribed by a 
number of planets. Kepler presents Bruno’s conception in the following terms:

Bruno made the world so infinite that [he posits] as many worlds as there are 
fixed stars. And he made this our region of the movable [planets] one of the 
innumerable worlds scarcely distinct from the others which surround it; so 
that to somebody on the Dog Star (as, for instance, one of the Cynocephals of 
Lucian) the world would appear from there just as the fixed stars appear to us 
from our world. 36

Kepler expounds Bruno’s conception acccurately, as he could find it in De immenso, 
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chap. I, 3 (again heavily underlined in Wackher’s copy). Kepler could, however, have 
found this obsessive idea of Bruno in many other places of De immenso, e.g. in chap. 
IV, 3 (“On the ascent to the heavens and the true contemplation of the world, where 
the image of the Earth is seen from the orb of the Moon”). Here Bruno had given 
expression to several points echoed by Kepler: the imaginary ascent to the heavens, 
the analogy with Lucian of Samosata,37 the Dog Star as a star of the first magnitude 
or one of the “suns nearer to us, whose earths also are necessarily less distant from 
the earths of this system”,38 “so that if we were in one of these stars of first magni-
tude, this sun of ours would appear equally as a star of the first magnitude”.39 The 
elimination of absolute places, whose “very cogitation carries with it I don’t know 

FIG. 3. Bruno, De immenso, III, 1; Wackher’s copy.
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what secret, hidden horror; indeed one finds oneself wandering in this immensity, 
to which are denied limits and centre and therefore also determinate places”,40 was 
also present in De immenso, chaps. I, 341 and III, 1.42 Even the somewhat surprising 
reference by Kepler to Moses’s “waters” (Genesis 1: 2 and 6–7) can be connected 
with the usual denomination by Bruno of the planets as “waters” (undae, aquae, 
lymphae).43 Kepler’s reference to Moses is intended as an argument of authority in 
favour of the finite number of “waters”, something rather strange given its absence in 
the Mosaic account of creation and sounding as an expression of the finitist prejudice 
in Kepler. Again, Kepler’s confessed “horror” before the infinite and the absence of 
fixed determinations of place in it is the opposite to Bruno’s sense of freedom and 
liberation from the prison of the finite universe with which De immenso opens.44 
Kepler’s language echoes that of Bruno when he says that he pretends to reduce the 
madness (insania) of those philosophers who 

misuse the authority of Copernicus as well as that of astronomy in general, which 
proves — particularly that of Copernicus — that the fixed stars are at an incredible 
altitude. Well, let us seek the remedy in Astronomy herself, so that by her arts 
and soothing blandishments this madness of the philosophers (a madness that 
was provoked by her indulgence, once the bolts were broken and confined spaces 
abandoned [ruptis locis et repagulis] and carried itself out into this immensity), 
might be led to come back within the bounds of the world and its prisons [intra 
Mundi metas, atque carceres suos]. Surely, it is not good to wander through that 
infinity [vaganti per illud infinitum bene non est].45

When Kepler limits himself to refuting Bruno’s madness in astronomy, he reduces the 
controversy to a matter of observation, namely to an undue and incorrect extrapola-
tion by Bruno and his followers from sound astronomical evidence. As we know, 
for Kepler observation shows that the stars are not distributed uniformly (as Bruno 
and his followers affirm, according to the logic of homogeneity), but it indicates 
the existence of a vast cavity in whose centre the Sun is enclosed by an outer wall 
of stars separated by shorter distances, so that the view of the universe from one of 
them would be very different from our perception from this single central hollow.46

On the contrary, Kepler does not confront Bruno’s thesis of more than six planets 
in our Copernican system and of every star being a sun with planets around it.47 The 
reason for this is, certainly, that there is no empirical evidence for the existence of 
such planets around the Sun or around the stars. There is, however, another reason, 
in this case metaphysical: Bruno’s conception presupposes the essential identity 
between Sun and stars and goes against Kepler’s principle of the singularity of the 
six planets around the unique Sun. In support of this supposition, Kepler need only 
summon the archetypical function of the five regular solids as determining necessarily 
the number of planets and their distances to the Sun, as well as the metaphysical and 
theological dimension of the finite spherical form of the universe with its determined 
places — centre, circumference and internal space. All this had been fully presented 
in the Mysterium cosmographicum in 1596, but re-emerged in dramatic form in 
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Kepler’s discussion with Wackher after the arrival at Prague of the announcements 
of Galileo’s telescopic observations.

3. The Refutation of the Plurality of Solar Systems in the Dissertatio and the 
Epitome

Kepler’s Conversation with Galileo’s Sidereal Messenger (Dissertatio cum Nuncio 
sidereo, Prague, 1610) was written in response to Galileo’s Sidereus nuncius of the 
same year.48 However, while he defended publicly the truth and validity of Galileo’s 
discoveries, Kepler also gave public expression to his discussion with Wackher (and 
Bruno) on the plurality of solar systems. Moreover, the Conversation indicates in 
some places that Kepler had been debating with Wackher on Bruno’s cosmological 
ideas in the years between 1606 and 1610. Thus, in his examination of the discover-
ies involving the Moon, Kepler relates that he was “deeply engaged [with Wackher] 
in these discussions last summer [1609]”49 regarding the lunar relief, adding that he 
adopted Wackher’s and Bruno’s opinion that “the bright areas [in the Moon] were 
seas” and that on this occasion he had written the first version of his Somnium.50 
Thus, the first oral notices in Prague of the discovery by Galileo of four new planets, 
transmitted by Wackher to Kepler as meaning that “these new planets undoubtedly 
circulate around some of the fixed stars”,51 seemed to imply that “a small difference 
of opinion of long standing between us had unexpectedly been settled”52 by the 
teaching of Bruno, for 

if four planets have hitherto been concealed up there, what stops us from believ-
ing that countless others will be hereafter discovered in the same region [of the 
fixed stars], now that this start has been made? Therefore, either this world is 
itself infinite, ... or ... there is an infinite number of other worlds (or earths, as 
Bruno puts it) similar to ours. 53

The difference established by the telescope between the planets (strongly magnified 
in size) and the stars (perceived as tiny points of light, deprived by the telescope of 
the luminous halo, the product of ocular vision) seemed also to speak in favour of 
Bruno’s ideas: “What other conclusion shall we draw from this difference, Galileo”, 
Kepler said, “than that the fixed stars generate their light from within, whereas the 
planets, being opaque, are illuminated from without; that is, to use Bruno’s terms, 
the former are suns, the latter, moons or earths?”.54

All seemed, then, to accord with the intended meaning of Bruno, with Kepler 
forced to accept “chains and a prison amid Bruno’s innumerabilities, I should rather 
say, exile to his infinite space”.55 Was Bruno’s thesis of the plurality of solar systems 
and of the identity between the Sun and stars indeed confirmed? Interestingly for us, 
Kepler now describes Bruno’s thesis as follows:

They [Bruno and his followers] supposed it was the fixed stars that are thus 
accompanied [by planets]. Bruno even expounded the reason why this must be 
so. The fixed stars, forsooth, are of the nature of Sun and fire, but the planets 
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of water. By an indefeasible law of nature these opposites combine. The Sun 
cannot be deprived of the planets; the fire, of its water; nor in turn the water, of 
the fire.56

It seems clear that Kepler is here referring to chap. I, 3, of De immenso underlined 
in the copy of Wackher, where Bruno had established the interdependency of suns 
(fires) and planets (waters) as a universal and necessary law of nature.57

Nevertheless, this threat vanished, since the planets discovered by Galileo do not 
orbit a star, but simply Jupiter. “I rejoice”, Kepler says, “that I am to some extent 
restored to life by your work. ... by reporting that these four planets revolve, not 
around one of the fixed stars, but around the planet Jupiter, you have for the present 
freed me from the great fear that gripped me as soon as I had heard about your book 
from my opponent’s triumphal shout”.58 Moreover, these new planets (or “satellites”, 
as Kepler will name them a few months later)59 around Jupiter can be integrated per-
fectly into Kepler’s harmonic planetary system. In fact, they complete the singular 
Moon–Earth relation with a proportion (either arithmetical or geometrical, it is soon 
thereafter to be affirmed) that surely extends to the other planets as well.60 In addi-
tion, the presence of satellites enables us to account for some discrepancies between 
calculated planetary distances and the regular solids.61 

As a consequence, Kepler does not accept Bruno’s conception of the stars as suns 
with planets revolving around them. But he expresses himself in moderate language, 
for he concedes that the position is that Bruno’s conception has not been confirmed 
and still remains a mere hypothesis, in need of possible confirmation by more accurate 
observations in the future: 

In the first place, suppose that each and every fixed star is a sun. No moons 
have yet been seen revolving around them [the stars]. Hence this will remain an 
open question until this phenomenon too is detected by someone equipped for 
marvellous refined observations. At any rate, this is what your success threatens 
us with, in the judgement of certain persons.62  

As Edward Rosen correctly noted, the sentences here in italics were absent in the 
letter of 19 April sent to Galileo.63 Kepler inserted them at the instigation of “certain 
persons”, most probably the Brunian Wackher,64 who no doubt considered that the 
confirmation of Bruno’s theory was only a matter of time. On the contrary, as we 
shall demonstrate, Kepler considered it otherwise: he was not really disposed to 
concede that “each and every star is a sun” — this being only a momentary rhetorical 
concession with no import, given that the consequence, namely planets revolving 
around every star, had not been confirmed65 — and, most important, he was convinced 
that the infinity (or at least the plurality) of planetary systems was metaphysically 
implausible, if not absurd. 

For one thing, the enormous increase in the number of fixed stars discovered by 
the telescope was interpreted by Kepler as a confirmation of his observational argu-
ment in De stella nova against the homogeneous and indifferent distribution of stars 
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in Bruno’s infinite universe:

Let him [Bruno] not lead us on to his belief in infinite worlds, as numerous as 
the fixed stars and all similar to our own. Your third observation comes to our 
support: the countless host of fixed stars exceeds what was known in Antiquity. 
You do not hesitate to declare that there are visible over 10,000 stars. The more 
there are, and the more crowded they are, the stronger becomes my argument 
against the infinity of the universe, as set forth in my book on the “New Star”, 
chap. XXI, page 104 [KGW, i, 204]. This argument proves that where we mor-
tals dwell, in the company of the Sun and the planets, is the primary bosom of 
the universe; from none of the fixed stars can such a view of the universe be 
obtained as is possible from our Earth or even from the Sun. For the sake of 
brevity, I forbear to summarize the passage. Whoever reads it in its entirety will 
be inclined to assent.66 

Kepler adds a further argument against the homogeneous infinity of Bruno: if the 
stars were like our Sun in size and brightness, then the sky would necessarily be as 
brilliant in the night as in the day: “If this is true, and if they are suns having the 
same nature as our Sun, why do not these suns collectively outdistance our Sun in 
brilliance? Why do they all together transmit so dim a light to the most accessible 
places? ... Will my opponent tell me that the stars are very far away from us? This 
does not help his cause at all. For the greater their distance, the more does every single 
one of them outstrip the Sun in diameter.”67 Thus, for Kepler, the only solution is to 
acknowledge the difference between the unique Sun and the rest of stars: “Hence it 
is quite clear that the body of our Sun is brighter beyond measure than all the fixed 
stars together and therefore this world of ours does not belong to an undifferentiated 
swarm of countless others.”68 From this enormous difference in size and brightness, 
added to the immense distance between the Sun and the very close stars, Kepler feels 
obliged to conclude that there is space only for one planetary system and that only 
this cosmic structure has a metaphysical foundation. He refers to this when he says, 
“I shall have more to say about this subject later on”.69 

The moment for this arrives towards the conclusion of the Dissertatio, when Kepler 
adduces a third reason “to which he [Wackher] seemed by his silence to assent”.70 
This appears to imply that this third reason would also oblige Bruno to assent. This 
reason or ‘consideration’ obtains its force from the archetypical foundations of the 
universe, that is, from the geometrical principles “unique and eternal, and shining in 
the mind of God”,71 even constituting God’s essence,72 after which God created the 
universe. Now, archetypes for the number and distances of the planets (i.e., for the 
structure of the planetary system) are the five regular solids, as Kepler had already 
established in 1596 in his Mysterium cosmographicum.73 As he puts it in the Disser-
tatio: “in geometry the most perfect class of figures, after the sphere, consists of the 
five Euclidean solids. They constitute the very pattern and model according to which 
this planetary world of ours was apportioned.”74 Now, if, as Bruno pretends, every 
star is the centre of a planetary system (or “synodus ex mundis” in Bruno’s terms),75 
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these new worlds or planetary systems would be either exactly as our own system 
of planets, that is, constructed after the pattern of the five regular solids, or different, 
constructed according to a different pattern. Kepler’s response is as follows:

Suppose then that there is an unlimited number of other worlds. They will be 
unlike ours or like it. You would not say, “like it”. For what is the use of an 
unlimited number of worlds, if every single one of them contains all of perfection 
within itself? ... If they differ in their distances, then they must differ also in the 
arrangement, type, and perfection of their solids, from which the distances are 
derived. Indeed, if you establish universes similar to one another in all respects, 
you will also produce similar creatures, and as many Galileos, observing new 
stars in new worlds, as there are worlds. But of what use is this? Briefly, it is 
better to avoid the march to the infinite permitted by the philosophers.76

For Kepler, then, a repetition of the single perfect planetary system (still more, an 
endless repetition) makes no sense; it is absurd. For the perfect and complete realiza-
tion of the geometrical archetype, one instance suffices, repetition adding nothing and 
perhaps even proving degrading in Kepler’s eyes. Different and necessarily inferior 
planetary systems have no more of a chance of existing. Here Kepler limits himself 
to stating that these worlds would be necessarily “less noble”,77 but it is also evident 
that he excludes their existence. 

Even though if, as Kepler says, Wackher accepted with silence Kepler’s refutation, 
it is difficult to believe that all this could have moved Bruno from his opinions. Most 
probably he would have dismissed it as another geometer’s speculation deprived 
of physical foundations, more or less the same criticism of the aprioristic position, 
arrived at by enthusiasm and obstinately maintained, that Kepler had applied in De 
stella nova to the defenders of infinity.78 Nevertheless, towards the end of the seven-
teenth century, Christiaan Huygens (1625–97), himself more inclined to a Brunian 
conception, discarded Kepler’s considerations as contrary to sound reasoning and 
empirical evidence, and based only upon mere aprioristic prejudices:

But beneath this argument is hidden another reason why Kepler wished to be 
able to view the Sun as an object ranking above the other stars, as the only one 
that Nature had furnished with a system of planets, and as the one situated in the 
middle of the world. In fact he needed this to confirm his cosmographic mystery 
according to which he would have the distances of the planets from the Sun 
correspond proportionately to the diameters of the spheres inscribed within and 
circumscribed about the Euclidean polyhedra. This could be plausible only if in 
the world there existed just one single system of planets, and consequently the 
Sun formed a unique species. But the whole of this ‘mystery’, rightly considered, 
seems to be no more than a dream born of the philosophy of Pythagoras or of 
Plato. Indeed the proportions by no means completely conform to reality, as the 
author himself concedes; and to explain this discrepancy he invents further causes 
that are completely frivolous. It is again with flimsy arguments that he establishes 
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the sphericity of the exterior surface of the world which is said to contain all the 
stars; and that he shows that the number of these is necessarily finite, arguing from 
the fact that this is the case for the size of each one of them. His most extravagant 
conclusion is that the distance from the Sun to the concave surface of the sphere 
of the fixed stars would be 600,000 Earth diameters.... For our part, we have no 
hesitation in accepting, along with the principal philosophers of our day, that the 
nature of the stars and that of the Sun are the same. This leads to a conception of 
the world altogether more splendid than that corresponding to the more-or-less 
traditional views we have just outlined. For what prevents us from thinking that 
each of the stars or suns has planets around it just like our own Sun?79 

We come to the same conclusion if we consider the other aspect of the archetypes. 
As is known, the regular polyhedra are included under the straight line, which forms 
with the curved line the category of ‘quantity’. Kepler, who in this follows Nicholas of 
Cusa, is convinced that God created the world according to ‘quantity’, the primordial 
archetype present in the very essence of God and realized in the first day of creation.80 
While the straight, as it has been said, is related to creatures, the curved line relates 
to God himself: “For in this one respect Nicholas of Cusa and others seem to me 
divine, that they attached so much importance to the relationship between a straight 
and a curved line and dared to liken a curve to God, a straight line to his creatures.”81 
Since the perfection and goodness of God required that creation was as perfect as 
possible,82 the world was created as an image of God’s essence, and consequently as 
a finite sphere which in its three constituents (the Sun in the centre, the fixed stars in 
the circumference, and the ‘aura aetherea’ in the intermediary space) represents God’s 
Trinitarian essence, “the image of God the Three in One in a spherical surface; that 
is, of the Father in the centre, the Son in the surface, and the Spirit in the regularity 
of the relationship between the point and the circumference”.83 Kepler remained 
faithful to this conception until the end of his life, as the enlarged repetition in the 
Epitome astronomiae Copernicanae clearly indicates.84 In this last work, Kepler 
draws special attention to the facts that prove the analogy: just as the Father, in the 
Trinitarian process, is the origin and Christ as Son is the way to the Father, the three 
persons being distinct although partaking in the same essence, in the same manner 
the centre and periphery or surface are, in the world, distinct; and the (absolute and 
unique) centre (the Sun), through its flowing, is the origin and source of the surface 
and of the radius, the surface (the sphere of fixed stars), like the Son with respect to 
the Father, being the only way to see the centre.85 

We cannot, therefore, agree with Judith Field, when she considers that the Trini-
tarian analogy “may, of course, have weighed with him in private, but he never, as 
far as I know, presented it as an argument for others”.86 It is difficult to concede that 
the analogy is not presented as an objectively valid argument in the Epitome, where, 
as we have seen, it appears at the beginning (second part of the first book), in the 
section entitled “De figura coeli” following the refutation of the Brunian infinite. 
There are grounds to believe that the analogy represents for Kepler a strong a priori 
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argument (as the doctrine of the five regular solids) for the finite size of the world, 
as well as for the singularity of the Sun and for the existence of the sphere of fixed 
stars not accompanied by any planets. Although Kepler would have unquestionably 
abandoned his doctrine if observational evidence had obliged him — Uranus was 
discovered only in 178187 and extrasolar planets are a matter for our own day — it 
is also evident that Kepler, besides refuting the infinity of the universe with the tra-
ditional arguments of Aristotelian origin,88 interprets observational evidence in the 
frame of this archetypal analogy with the Trinity. We see this in the Epitome, when, 
“on the position, order, and movement of the parts of the world; or, on the system of 
the world” (Book IV), he appealed to the Trinitarian archetype as his basis for the 
claim that the Sun, sphere of the fixed stars and intermediary region of the planets 
have the same quantity of matter:

Since these three bodies are analogous to the centre, the surface of the sphere 
and the interval, three symbols of the three persons of the Trinity; it is believ-
able that there is only as much matter in one as there is in either one of the two 
remaining: in such fashion that a third part of the matter of the whole universe 
should be packed together into the body of the Sun, although in comparison with 
the amplitude of the world the body of the Sun is very limited; that likewise a 
third part of the matter should be spread out thinly throughout the immense 
expanse of the world; ... and that finally, a third part of the matter should have 
been rolled out in the form of a spherical surface and thrown around the world 
on the outside as a wall.89  

In this manner, the Sun, as the image of the Father, represents one-third of the uni-
verse and is equivalent to the totality of the sphere of fixed stars. It is difficult to 
express more cogently the singularity and pre-eminence of the Sun with respect to 
the fixed stars. Thus, the central position of the Sun is fully justified, together with 
the fact that around it alone is a set of planets disposed in number and distances 
relating to the five polyhedra. This reduces the stars to “mere points”,90 and Kepler 
can conclude triumphantly against the supporters of the assimilation of the Sun to 
the stars: “these observations do not prevent the Sun from having a body of greater 
bulk than the fixed stars. Moreover, the view of the Sun from such a great interval 
would be brighter than that of whatever fixed stars.”91  

Contrary to the analogy of the Trinity with the (finite) sphere, Kepler neither men-
tions nor employs another symbol frequently used by Cusa and the Hermetic and 
Neoplatonic tradition to indicate God: that according to which “God is an infinite 
sphere, whose centre is everywhere and the circumference nowhere”.92 Cusa had 
employed it in his De docta ignorantia (Book II, chap. 12) to indicate both God and 
the universe.93 It seems that Kepler knew only indirectly (from hearsay) of this work 
of Cusa, and that he did not come to know the symbol of the infinite sphere.94 This 
symbol, however, contradicts Kepler’s rigorously finitist conception of geometry (for 
him, all that has a figure, e. g. a sphere, is necessarily limited),95 and therefore it is 
highly improbable that he could have made positive use of the symbol. 
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On the contrary, Bruno had adopted the symbol of the infinite sphere as the best 
definition of both God, and the universe as God’s necessary production, in which all 
His infinite power is actually realized. Already in his Italian dialogue De l’infinito 
universo e mondi (1584), Bruno had rhetorically asked: “Why do you desire that 
centre of divinity which can (if one may so express it) extend infinitely to an infinite 
sphere, why do you desire that it should remain grudgingly sterile rather than extend 
itself, like a father, fecund, ornate and beautiful?”96 But one can find the symbol 
throughout all his Latin works. Thus, in De immenso: “This [the universe] is what 
Xenophanes defined as an infinite sphere, whose centre is everywhere, the circum-
ference nowhere.… Thus, the infinite is nowhere as concerns the circumference, 
everywhere as concerns the centre.”97

For Bruno, the “infinite sphere” is not only the sole adequate expression of God’s 
infinite power, but it also manifests God’s simplicity and unity, since Bruno rejects 
the Trinitarian dogma and reduces the persons of the Son and the Spirit to infinite 
nature itself and the soul of the world in it, respectively. In this manner, infinite (and 
homogeneous) nature, since it is also the necessary and total outcome of God’s power 
and will, becomes itself divine. The fact that in the infinite the centre is everywhere 
allows us to recognize God in totality (maximum) and in each minimal point in the 
universe (minimum) as well.98 Contrary to Kepler’s careful distinction between God 
and His (finite) creation, in Bruno God becomes identified with the infinite universe. 
For our purpose and concerning the relation between the Sun and the stars, the fact 
that the centre is everywhere makes of every point the centre of force by which God 
radiates his creative energy towards a periphery. The Sun can be, therefore, in any 
point, and consequently there are infinite points in the universe from which infinite 
suns act as centres of planetary (and cometary)99 motions. Significantly, Bruno had 
said in his first Italian dialogue (La cena de le ceneri, or The Ash Wednesday Supper): 
“the region of the Bear’s tail no more deserves to be called the Eighth Sphere than 
does that of the Earth (on which we live)”,100 or our Sun. Consequently, if every star 
is a sun, there are according to Bruno as many planetary systems as stars or suns, 
and viewed from any star our Sun has the same appearance as that same star when 
viewed from the Earth. 

Conclusion

As we have seen with Huygens concerning the question of the planets, refusal to 
accept Kepler’s finite sphere as an archetype for the entire universe implied in the 
seventeenth century the disposition to adopt a view of the universe more akin to that 
of Bruno. Thus, for Newton in a draft written after 1684 and entitled “Of the Sun 
and Fixt Starrs”, 

The Universe consists of three sorts of great bodies, Fixed Stars, Planets, & 
Comets.... The fixt Stars are very great round bodies shining strongly with their 
own heat & scattered at very great distances from one another throughout the 
whole heavens. Those wch are nearest to us appear biggest & those wch are 
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further of appear less & less till they vanish out of sight & cannot be seen without 
a Telescope.... Our Sun is one of ye fixt Stars & every star is a Sun in its proper 
region. For could we be removed as far from ye Sun as we are from ye fixt stars, 
the Sun by reason of its great distance would appear like one of ye fixt stars. And 
could we approach as neare to any of ye fixt Stars as we are to ye Sun, that Star 
by reason of its nearness would appear like our Sun.101

For its own part, the General Scholium to the second edition of Newton’s Principia 
(1713) accepted the possibility of planets moving around the stars, subject to God’s 
providence.102 In Bruno, however, who had no notion of universal gravitation, the 
immanent providence of God had placed planetary systems at great distances from 
one another, these systems being stable by virtue of their internal equilibrium. On the 
contrary, for Newton this equilibrium was always unstable and necessitated regular 
interventions by God’s providential rule and supervision.103 
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ORIENTATIONS OF CHANNEL ISLANDS MEGALITHIC TOMBS

DAVID LE CONTE, La Société Guernesiaise

Introduction

The British Channel Islands (see Figure 1) lie in the Bay of Mont St Michel. The 
archipelago comprises two main islands: Jersey (12,028 hectares) and Guernsey 
(6,344 hectares), and several smaller ones, the largest of which are: Alderney (818 
hectares), Sark (525 hectares) and Herm (132 hectares).1 The latter three islands, 
together with Guernsey, form the Bailiwick of Guernsey.

The islands were part of the French mainland during the lowered sea levels of 
the last ice age, but the rising post-glacial sea resulted in Guernsey and Alderney 
becoming islands sometime about 9000 B.C., with Jersey following perhaps 3000 to 
3500 years later.2 Guernsey was in fact two islands until 200 years ago, the northern 
part, where most of its megalithic tombs are found, being separated from the southern 
and larger part by a narrow channel which could be crossed at low tides, and which 
was reclaimed in the early nineteenth century.

Archaeological investigations in the Channel Islands have yielded evidence of 

 FIG. 1. The Channel Islands.
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Palaeolithic, Mesolithic and Neolithic habitation. Sebire points out that the location 
of the Channel Islands has produced two separate traditions of monuments: the pas-
sage graves of the Atlantic coastal distribution and the long mounds of the North 
European plain.3 The passage graves generally date from 3500 B.C., and cists from 
2500 B.C. The earliest date of one Neolithic tomb (Les Fouaillages on Guernsey) is 
4500 B.C.4 The oldest in Jersey, La Sergenté, dates from c. 4500–4000 B.C., and is the 
only corbelled passage grave in the Channel Islands.5 Interestingly, the orientations 
of these two are quite different from those of the other tombs.

All are built of the local granite. Excavation of most of them was carried out in 
the nineteenth century, and a number have undoubtedly been disturbed or lost, some 
as a result of an active stone quarrying industry during that century. Archaeological 
excavation of earlier (Mesolithic) and later (Bronze Age, Iron Age and Roman) sites 
has continued to the present day.

New measurements have been made by the author of the orientations of the 
Channel Islands’ megalithic tombs, with a view to determining whether there is any 
correlation with astronomical phenomena, such as sunrise. The tombs selected for 
this study included the known passage graves (Figures 2 and 3), whose alignments 
could, in general, be well defined, and those cists (Figure 4) that appeared to have an 
undisturbed alignment. This paper summarizes the study, which has been published 

  FIG. 2. La Pouquelaye de Faldouet, Jersey.
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FIG. 3. Le Trepied, Guernsey.

 FIG. 4. Sandy Hook cist-in-circle, Guernsey.
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in greater detail elsewhere.6 In this paper the names of the tombs generally follow 
those used by Kendrick7 and Hawkes.8

Methodology

Measurement of the tomb orientations was made by use of the accurate digital maps 
(Digimaps) of the islands, and the Differential Global Positioning System, which 
can give positions with accuracies of the order of one centimetre. The method uses 
an inter-comparison of signals from up to eleven positional satellites, together with 
accurately surveyed ground base stations located on Jersey and Guernsey. It involves 
taking positional measurements at two locations along the axis of each tomb, several 
metres apart, plotting them on the Digimap, and, from their coordinates, calculating, 
trigonometrically, the azimuth of the line joining them.

This method was supplemented by compass bearings, sightings on distant land-
marks which could be identified on the Digimap, direct measurements from aerial 
photographs, measurements from plans that appear in various publications,9 and from 
a previously published graphic of tomb orientations.10 Not all of these methods could 
be used on every tomb. In some cases intervening hills or trees prevented reception of 
the GPS base station or satellites, aerial photographs did not always show the tomb 
clearly, or the topography was such that no landmarks could be sighted.

An analysis was made to determine the respective error magnitudes for each tomb 
and method. Weightings were then used to calculate the best values. The azimuths 
of sunrise and moonrise at the relevant dates were established using standard com-
mercial software.11

Sunrise (and sunset) is defined astronomically as occurring when the Sun’s upper 
limb is on the horizon.12 While sunset may be perceived as occurring at this time, 
it may be conjectured that sunrise is perceived as occurring at a later instant, such 
as when the centre of its disc is on the horizon. This can produce differences from 
the astronomically defined sunrise azimuths of up to half a degree. Therefore, the 
azimuths of sunrise for the solstices and equinoxes were computed corresponding 
to this later time.

Local topography will also have an effect on perceived rising times, and therefore 
azimuths and solar declinations of these events.13 At the vernal equinox, for exam-
ple, the angle of the ecliptic to the horizon means that, for each degree increase in 
horizon altitude, the time of the rising Sun is delayed by over 7 minutes, and shifted 
in azimuth by 1.4º south. Examination was made of the relative topographies along 
the axes of each of the tombs, to determine the relevant horizon altitudes and cor-
responding declinations.

The locations of the Guernsey and Jersey tombs are shown in Figures 5 and 6, 
respectively. Herm has a large number of tombs for its small size, although only one 
(Robert’s Cross) survives in a measurable state. (Orientations of the remainder were 
estimated from early sketch plans.) New excavations of the Herm tombs are to be 
carried out in 2008 and 2009, and it is possible that further measurable orientations 



501Orientations of Channel Islands Megalithic Tombs

 FIG. 5. Map of Guernsey showing tomb locations.

FIG. 6. Map of Jersey showing tomb locations.

may result. Excavations in the neighbouring island of Jethou in 2007 revealed noth-
ing measurable.14 There is only one tomb, a cist, in Alderney surviving in a meas-
urable state, and that was measured by means of an on-site photograph and aerial 
photography, a church tower conveniently lying directly on the tomb alignment. The 
tombs in Sark are either too disturbed or have insufficiently clear orientation for any 
meaningful measurement.15
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The Differential GPS measurements and sightings were carried out in Guernsey in 
May 2003 and July 2004, in Jersey in October 2007, and in Herm in January 2008. 

Results

The results are shown in Table 1, and graphically in Figures 7 and 8. The latitude 
of Jersey is 49.2º N, that of Guernsey and Herm is 49.4º N, and that of Alderney is 
49.6º N. The declination corresponding to the azimuth and horizon altitude of each 
tomb has been calculated using Ruggles’s GETDEC4 computer program.16

FIG. 7. Orientations of passage graves.  Fg: Les Fouaillages, Sg: La Sergenté.

FIG. 8. Orientations of cists.
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TABLE 1.

Island Map ref. Site Az. +/– Alt. Dec.
    º  º  º  º
Long mound (c. 4500 B.C.)

Guernsey a Les Fouaillages  42  1 0  29

Corbelled tomb (4500–4000 B.C.)

Jersey K La Sergenté 151  3 0 −35

Passage graves (c. 3500 B.C.)

Guernsey b Le Trépied  58  2 0  20
Guernsey d La Rocque qui Sonne  typ.†  0 
Herm R Robert’s Cross (Number 12)  89  5 7  6
Guernsey e Le Déhus  82  1 0  5
Alderney L Essex Hill *  85 10 0  3
Guernsey h Le Creux ès Fées  88  2 0  1
Jersey D La Pouquelaye de Faldouet  89  1 0  0
Jersey A La Hougue Bie  94  3 0  −3
Jersey H Le Couperon de Rozel  98  2 0  −6
Alderney N Les Pourciaux south *  98 10 0  −6
Herm U Number 13 * 109 10 7  −7
Guernsey i Delancey 103  1 0  −9
Herm T Number 6 * 106 10 1 −11
Jersey C Ville-ès-Nouaux long-cist 108  2 0 −12
Jersey G Les Montes Grantez 108  1 0 −12
Alderney O Les Pourciaux north * 110 10 0 −13
Jersey I Mont de la Ville * 113 10 0 −15
Guernsey k La Varde 113  4 0 −15
Jersey E Mont Ubé 114  2 1 −16
Jersey F Dolmen des Géonnais 116  1 0 −17
Alderney P SW of Fort Essex * 122 10 0 −21

Cists−in−circles (c. 2500 B.C.)

Guernsey c Unnamed site near tower 7  74  5 0  10
Guernsey f Sandy Hook  85  4 0  3
Guernsey g La Mare ès Mauves  88  3 1  2
Herm Q Number 15 *  92 10 0  −2
Jersey B Ville-ès-Nouaux short-cist  93  5 0  −2
Alderney M Fort Tourgis  99  2 0  −6
Guernsey j La Platte Mare 111  2 1 −13
      
  North extent of moonrise  42    28
  Summer solstice sunrise  50    24
  Equinox sunrise  89     0
  Winter solstice sunrise 128   −24
  South extent of moonrise 139   −30

* The orientations of sites marked with an asterisk are based on published historic sketch plans, as the 
sites themselves do not survive in a measurable state. Comparison with tombs that can be measured with 
orientations derived from published plans shows discrepancies of several degrees, and therefore relatively 
large errors have been assigned to those tombs for which only plan data are available.
† La Rocque qui Sonne is too disturbed for measurement, but was clearly orientated in the typical easterly 
direction.
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Conclusions

The Guernsey tombs’ entrances, with one exception, point towards directions lying 
between sunrise at the summer and winter solstices. The exception is Les Fouaillages 
(Figure 9), whose date and structure are unique in the island, and whose orientation, 
perhaps coincidentally, matches the northern limit of moonrise. The Jersey, Alderney 
and Herm tombs generally point south of east, but north of the midwinter sunrise. 
The sole Jersey exception, La Sergenté (Figure 10), is unusual, being of an early 
date and atypical design. As might be expected, a few, such as Le Creux ès Faïes in 
Guernsey and La Hougue Bie in Jersey, are close enough due east that the equinoctial 
rising sun penetrates to the back of the tomb.

These results are consistent with the hypothesis, expressed by Hoskin and Rug-
gles,17 that the tombs were orientated towards sunrise at the date their construction 
was started. Using Hoskin’s terminology,18 of the 30 tombs, 28 are Sun Rising (SR), 
one is Sun Climbing (SC), and one does not conform.
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ORIENTATIONS OF DOLMENS OF WESTERN EUROPE:
SUMMARY AND CONCLUSIONS

MICHAEL HOSKIN, St Edmund’s College, Cambridge

Over the past two decades, a series of papers in this journal and its Archaeoastronomy 
supplement have reported on the orientations of the Neolithic communal tombs in 
the west of Europe.1 Such tombs are by no means uniformly spread throughout this 
region. Communication was often by water, and so it is not surprising that in Iberia 
(for example) tombs deep in the interior are rare. But on the broader canvas of Europe, 
there are large areas where such tombs are plentiful and others where they are seldom 
found. For example, in Italy and Sicily, there are almost no Neolithic tombs; and they 
are rare along the northern French coast in Normandy and points east.

The result is that Iberia together with the region of France lying west of a line 
from Nice to the Channel Islands has formed a convenient geographical area for 
our study, an area relatively isolated from those other regions of Europe that have 
concentrations of Neolithic tombs. This study is now complete, and the published 
papers contain lists of orientations of communal tombs of all the various types to be 
found in each part of our area. It is therefore possible to attempt an overview and to 
reach conclusions.

At first encounter, the variety of forms that the tombs take is bewildering. Most 
are built on the surface, but a few are excavated out of the bedrock.2 Of those on the 
surface, most are megalithic, built with a small number of large stones, but some are 
made of large numbers of small stones, most notably the false-cupola tombs known 
as tholoi.3 Of the megalithic tombs, some are modest in size and could be built by a 
single family in a matter of days, others are monumental on a scale that defies belief. 
Most are passage graves, but the passages may be long or short.

However, all these communal tombs were designed to permit the introduction 
of additional bodies as the need arose, and although very occasionally access was 
from overhead,4 nearly always the chamber has a well-defined entrance opposite the 
backstone, and therefore an orientation, the direction ‘faced’ by bodies imagined as 
looking out through the entrance.

With rare exceptions, the passage (if any) has the same orientation as the cham-
ber; that is, the monument as a whole has an axis of symmetry and its orientation is 
unproblematic. On the French Causses, however, there are a few small ‘coudé’ tombs 
in which the passage is set at an angle to the chamber,5 and the same is true of a hand-
ful of major tombs in the Carnac region of Brittany;6 in these the orientation (if any) 
intended by the builders is unclear, although the dual directions involved are far from 
random. The great Breton dolmens ‘à entrée latérale’ — in effect, east-facing allées 
couvertes with the entrance located around the corner on the south side — appear at 
first sight to be similarly anomalous, but I have argued that this is not so.7
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With these few exceptions, the Neolithic dolmens of the area have well-defined 
and uncontroversial orientations that can be measured. The first question then to 
be asked of any group of dolmens is, Do the orientations fall into a pattern or are 
they random? The answer, for all regions, all periods, and all forms of structure, is 
invariably: Yes, they fall into a pattern. That is, the builders always felt constrained 
to construct the tomb so that its orientation conformed to custom.

The second question is, Was the pattern motivated by the sky? Investigators often 
assume that this is the case, but this is a methodological error: the orientations of 
mosques display a clear pattern and we know this has nothing to do with the sky. The 
clearest evidence of a pattern that was certainly motivated by the sky is to be found in 
the seven-stone ‘antas’ of the Alentejo region of Portugal.8 These tombs are of unique 
construction (the side-stones are not orthostats but each leans on its predecessor) 
and so they form a well-defined group. Of the 177 measured (see Figure 1), every 
single one faced within the narrow range of the eastern skyline where the sun (and 
the moon) rose. That this could happen by chance is out of the question, and as the 
tombs are scattered over a vast area of Portugal (and even into Spain), the custom of 
orientation cannot be terrestrial in motivation and so must be celestial.

The range of moonrise extended a little further north and a little further south of 
the range of sunrise, and so these tombs that sometimes faced sunrise would also 
sometimes face moonrise. However, in the summer the would-be builders must have 
been occupied in growing food and only in the autumn could they turn to building 
work, after the harvest was in. Overwhelmingly, the anta orientations do in fact 
face sunrise in the autumn, which strongly suggests that the builders embarked on 

Histogram of orientations of 177 antas of central Portugal and neighbouring Spain. The two with 
orientations 128° and 129° respectively are in a valley with steep sides and so they too faced 
within the range of sunrise.

FIG. 1. 
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construction around that time of year and that they aligned the tombs to face the 
rising sun on the day that work started (as was not uncommon in the Middle Ages 
with Christian churches). The alternative hypothesis, that the tombs faced moonrise, 
makes it less easy to explain this preference for orientations a little south of east. We 
therefore conclude, first, that the custom of orientation was without doubt celestially 
motivated; and second, that this custom probably required the anta to face the rising 
sun on the day building started.

A tomb that is oriented within the range of sunrise I characterize as ‘SR’. We find 
that not only the antas but the tombs of western Iberia as a whole are overwhelm-
ingly SR: of the 334 tombs I have measured (Figure 2), no fewer than 324 (97.0%) 
faced within the range 60°–130°, that is, within the range of sunrise (or marginally 
further south).9

In southern Spain there are other groups of tombs that are SR, although with 
occasional anomalous orientations. The megalithic sepulchres of Montefrío provide 
one example,10 and the tholos tombs of Los Millares another.11 However, as we 
move further from the Atlantic seaboard where the earliest tombs are to be found, 
the SR custom appears to be relaxed, and we find increasing numbers of tombs that 
face south of midwinter sunrise; that is, in directions where the sun had risen and 
was climbing in the sky (these I term ‘SC’). In total, I have measured 945 tombs in 

FIG. 2. Histogram of orientations of 334 tombs of west Iberia.
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Spain, Portugal and the region immediately across the Pyrenees in France, and of 
these no fewer than 911 (96.4%) faced the sun when rising or climbing (or around 
culmination: in the range 60°–190°).12

In the interior of southwest France, on the Causses, we find that the numerous 
tombs are predominantly ‘simple dolmens’, formed of just four stones: a backstone, 
a stone to each side, and a capstone. Even when such a modest tomb is in pristine 
condition its orientation is poorly defined, and many have in fact been disturbed over 
the centuries. Furthermore, our information on their orientations is owed mainly 
to (French) archaeologists, not all of whom had this datum as one of their primary 
concerns. This makes the SR/SC pattern of reported orientations all the more remark-
able.13 Every one of nearly 600 such tombs (outside the southerly départements of 
Ardèche and Gard, of which more later) faced within the range 0°–192°: westerly 
(and northerly) orientations are unknown, and over 92% of the tombs faced within 
the range 60°–166°.

Figure 3 shows the orientations of the 945 tombs of Iberia together with the 597 of 
the Causses outside Ardèche and Gard. It is evident at a glance that the overwhelming 
majority of these 1542 tombs are SR, with orientations to sunrise in the autumn and 
early winter predominating; and that most of those that are not SR are SC.

Further north in France, in the Loire Valley, we encounter a wide variety of tomb, 
including the monumental ‘Angevin dolmens’ found in greatest numbers near Angers. 
Every one of the 85 tombs measured in this area faced the eastern half of the hori-
zon. Four (4.7%) faced anomalously north of midsummer sunrise, but the other 81 
(95.3%) are SR/SC.14

When we cross into Brittany in the far northwest of France, we encounter an even 
greater variety of tomb.15 There are a handful of outlying Angevin dolmens, and, 

Graph of orientations of 1542 tombs of Iberia and of the Causses excluding Ardèche and Gard 
(courtesy of David Le Conte).

FIG. 3. 
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along the south coast, a number of ‘transcepted’ tombs, and of these a minority faced 
westerly. When we consider the much more numerous Breton passage graves and the 
later allées couvertes, it proves helpful to divide the départements of Brittany into 
those in the south and east (and therefore nearest the Loire), and those in the north 
and west. Of the 68 passage graves measured in the south and east, all (100%) are 
SR/SC; of the 21 allées couvertes in the south and east, all (100%) are SR/SC; while 
the handful of dolmens ‘à entrée latérale’ in the south and east are all SR. In the north 
and west, however, although the majority of tombs of all types are SR/SC, a significant 
minority face westerly: the consensus is no longer overwhelming.16 Meanwhile of the 
31 measurable tombs in the nearby Channel Islands of Jersey, Guernsey, Alderney 
and Herm, 29 (93.5%) are SR and the remaining 2 (6.5%) are SC.17

This overview has so far taken into account over 1700 tombs spread over Portugal, 
Spain, southwest, west and northwest France, the French Causses, and the Chan-
nel Islands, a vast region extending some 1500 km from one extreme to the other. 
Throughout this region, when agriculture was developed and the local clan settled 
in one place, people everywhere decided to build communal tombs on the surface 
of the ground, tombs that often seem to be bold statements to the passer-by that the 
land has been occupied by the clan since time immemorial; and of these 1700 or so 
tombs, nineteen out of every twenty faced sunrise or the sun when it was climbing 
in the sky.

Along the French Mediterranean coast, however, things were very different, and 
many of the tombs faced westerly rather than easterly. Working on the principle that 
customs become increasingly relaxed at greater distances from their source (in both 
time and space), archaeologists have pinpointed the origin of the west-facing tombs 
— so anomalous in the broad European context — at Fontvielle, near Arles, close 
to the Rhône.18

The Fontvieille tombs were not prominent surface structures as in most other 
places; in fact, they were not surface structures at all. Instead, the long rectangular 
chambers were excavated out of the bedrock and then covered with roof-slabs. These 
slabs were carefully dressed on the interior, but the exterior was left in its natural 
state and cannot easily be distinguished from undisturbed bedrock; only the presence 
of discreet entrance steps to the chamber below betrays the existence of a tomb. In 
one place, where the rock was of poor quality, the trench was excavated as usual, 
and then a dolmen with drystone walls was built within it, below ground level and 
concealed from sight.

Not only were the tombs hidden from view, but they faced west rather than east. 
The number of tombs at Fontvieille is too small to permit a statistical proof, but the 
pattern of orientation is consistent with the tombs’ being constructed to face the 
setting sun (‘SS’). 

With increasing distance from Fontvieille, we find tombs that modify the struc-
tural form found there: the tombs are now constructed on the surface rather than 
below ground, the chambers are again rectangular but less extreme in length, and 
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the sidewalls frequently alternate the fragile drystone with vertical slabs. And just as 
in Iberia the strict SR custom seems to have been relaxed with increasing distance 
to permit directions where the sun is climbing and so became SR/SC, so the SS 
custom of Fontvieille seems to have been relaxed to permit directions where the sun 
is descending (‘SD’) and so became SD/SS.

To the east of Fontvieille, throughout Provence in the direction of the Italian 
frontier, the tombs are uniformly SD/SS (see Figure 4). Influence in Provence, it 
seems, came solely from Fontvieille; and this is unsurprising, because in neighbour-
ing départements of southeast France the SR/SC tombs widespread elsewhere are 
nowhere to be found. But to the northwest and west of Fontvieille, as far as the Span-
ish frontier and even a little beyond, the Fontvieille custom of westerly orientation 
was in conflict with the normal SR/SC custom found on the Causses, and in these 
regions there is a confusion of construction styles as well as of orientations.19 The 
situation is particularly interesting in Ardèche and Gard, not far from Fontvieille. 
There the SR/SC tombs tend to face closer to south than usual, and the same is true 
of the SD/SS tombs (see Figure 4): it is as though the rival customs are seeking to 
downplay their differences.20

The picture that has emerged from our fieldwork, therefore, is of orientations to 
sunrise, or to the sun when rising, throughout Iberia and the southwest, west and 
northwest of France, as far as the Channel Islands; and to sunset, or the sun when 
descending, along the French Mediterranean coast east from Fontvieille and (but 
only in competition) west from Fontvieille as well.

Histogram of 84 Fontvieille-type dolmens in Provence (to the east of Fontvieille), and 26 in east 
Languedoc (to the west and northwest). Those in Provence have azimuths between 206° and 289°: 
they are uniformly SS/SD, and none of them is close to culmination. The five tombs with azimuths 
closest to south are all in Ardèche, where tombs of easterly-facing traditions are also found. 

FIG. 4. 
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NOTE

A TEST OF THE “SIMULTANEOUS TRANSIT METHOD”

GEOFFREY KOLBE, Newcastleton, Scottish Borders 

1. Introduction

This Note reports on experiments devised to test the accuracy of the “Simultaneous 
Transit Method” (STM) by which, according to Kate Spence,1 eight Old Kingdom 
pyramids from Snofru to Neferirkare were aligned to the cardinal points. This STM 
involved the use of a plumb line and sighting vane to observe two circumpolar stars 
and fix the azimuth at the moment when one star was directly above the other. A 
small lamp, some distance away from the plumb line, was then positioned so that it 
had the same azimuth. The plumb line and the small lamp formed the two ends of a 
principal survey line from which the pyramid was aligned.

2. Experimental Procedure

For practical reasons, I tested the STM by two separate experiments, described in 
Sections 3 and 4 below.

The apparatus used for the experiments consisted of a light cotton rope for the 
plumb line, having a diameter 3.8mm. A tripod supported the line to a height of 
2.8m. To mitigate against wind which would cause a traditional weighted plumb line 
to sway and oscillate (and not having the luxury of being able to wait for windless 
nights), I tethered the bottom of the line to a weighted board sitting on the ground. 
A lead-screw mechanism allowed the bottom of the line to be adjusted so that the 
line was vertical. I tested the verticality of the line using a theodolite, which viewed 
the line at the approximate azimuth of interest.

The sighting vane was made from a piece of sheet copper 1mm thick, into which 
a slit of width 3.8mm was cut. The sighting vane was attached to a block of wood 
using a wing-nut, so that it could be rotated and set with the slit vertical. A flat board 
was placed on the ground and packed so that it was firm. The sighting vane block was 
set upon the board and the copper sighting vane rotated so that the slit was parallel 
by eye with the plumb line. The block could now be moved about the board with 
the slit remaining vertical. For these experiments, the sighting vane was set up 2.7m 
behind the plumb line.

3. Principal Survey Line Alignment

This experiment was performed at Riccarton in Scotland, 55° 14.8′N, 2° 42.8′W. For 
this experiment, a small peg was driven into the ground 70m away from the plumb 
line. The azimuth of the peg from the line was 168° 53′ ± 1′ as measured in the usual 
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way with a theodolite, which was calibrated by taking timed sightings of the sun. 
A white light LED, 5mm in diameter, was set up directly over the peg. The sight-
ing vane was adjusted (at night) so that the lamp was occluded by the line and then 
left in place. Following this, two observations were made of the times at which the 
star Sirius transited the peg and was occluded by the plumb line. On 23 November 
2007, Sirius was observed to be occluded by the line for a period of six seconds. The 
mid-point of the period of occlusion occurred at 02:05:20 GMT, at which time the 
azimuth of Sirius was calculated to be 168° 52.2′. The second observation was made 
on 25 November 2007 when Sirius was observed to be occluded for a period of four 
seconds. The mid-point of the period of occlusion occurred at 01:57:32 GMT, at which 
time the azimuth of Sirius was 168° 53.1′. The average of these two observations is 
168° 52.7′, which is in excellent agreement with the theodolite azimuth measurement 
of the peg from the line.

This experiment showed that by using the apparatus described here, it is possible 
to measure the azimuth of a survey line on the ground to an accuracy of ±1′ from an 
observed stellar transit. There is no reason why the reverse should not be true, allowing 
a survey line to be set with similar accuracy from an observed stellar transit.

4. Observation of a Simultaneous Azimuth

This experiment was performed in the Western Desert of Egypt, where there are 
clear skies and where the latitude was similar to that of Giza. Due to precessional 
drift, the star pair proposed by Spence, Mizar (ζ UMa) and Kochab (β UMi), are 
no longer suitable. It was decided instead to use the star pair Kochab and Alrai (γ 
Cephei). Their altitudes at the moment of simultaneous azimuth are very similar to 
those of Kochab and Mizar in Old Kingdom times and the simultaneous azimuth is 
only 6° away from True North. 

An observation was made on the night of 3 November 2007. The location, as 
recorded from a GPS receiver, was 27° 28.3′N, 28° 59.6E. The method was to track 
Kochab (the lower and faster star) with the sighting vane, keeping it occluded until 
Alrai (the upper star) was also observed to be occluded. Both stars were observed 
to be simultaneously occluded by the plumb line for a period of 17 seconds. The 
mid-time of the observed occlusion period was 20:29:43 GMT, which was just three 
seconds earlier than the calculated moment of simultaneous azimuth at 20:29:46 GMT. 
Kochab had an azimuth rate of change of one minute of arc every 15.4 seconds, from 
which it can be determined that the sighting vane was set correctly to the plumb line 
with an accuracy of about 0.2′ and a precision of about ±0.6′.

5. Conclusions and Discussion

It has been shown that with apparatus of the scale and type used for the experiments 
described here, an accuracy of ±1′ should be easily achievable for the STM. A taller 
plumb line would have enabled the sighting vane to be set further back and so achieve 
greater sensitivity, although diffraction effects would limit the plumb line to sighting 
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vane distance to about 10m. 
Due to precessional drift, the simultaneous azimuth of Kochab and Mizar during 

the Old Kingdom period varied2 by about 31′ per century. Spence3 hoped that it would 
be possible to date the pyramids of Khufu and Khafre to ±2 years or better, which 
assumes that the pyramid surveyors had used the STM to lay down the principal survey 
line with an accuracy of about ±0.5′. On the basis of on the experiments described 
here, the STM would appear to be capable of accuracy of this order.

Such accuracy would be clearly better than the ±2′ general limit set by Belmonte4 
for possible alignment methods of Old Kingdom pyramids. Belmonte based his limit 
on a resolving power of 3′ for the unaided human eye. But the STM is by nature a 
null method, which does not require good visual acuity. (The apparatus is aligned 
with a star when the star is occluded by the plumb line and is not seen.) It is this 
property that gives the STM the potential for accuracy that would appear prima facie 
to exceed the capabilities of the human eye.

It should be emphasized that the accuracy of these experimental results does not 
depend critically on precision in the construction of any of the apparatus elements, or 
on the materials used. A version of the New Kingdom merkhet (for the plumb line) 
and bay (for the sighting vane) would have been quite suitable. It is only necessary 
that the slit width in the sighting vane should be smaller than that of the dark adapted 
pupil of the eye (about 7mm), yet wide enough that the star can still be clearly seen, 
and that the plumb line width should be close to that of the slit. For the lamp, the 
only requirement is that the angular width of the flame, as viewed from the sighting 
vane, be small compared to the required precision of the STM. This criterion would 
be easily met using a typical ancient Egyptian small oil lamp over the base length 
of a typical Old Kingdom pyramid.

There is little doubt that the Old Kingdom Egyptians could have built an apparatus 
as described here with the materials available to them and achieved similar accuracies 
to those reported here. Discussion of whether they did, or indeed would have used 
the STM to align their pyramids, is beyond the scope of this brief communication. 
However, this work is a necessary first step to answering these questions.
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When Pierre Gassendi died he left a large legacy of letters. Best remembered as a 
mechanical philosopher, mitigated sceptic, and Epicurean atomist, Gassendi made 
his early reputation in astronomy, and by mid-career was known throughout Europe 
as one of the chief architects of the New Science. In retrospect, as Rochot remarked, 
Gassendi’s influence in science was more philosophical and critical than technical 
and systematic. Gassendi was a gentle sceptic and eclectic humanist; his empiricism 
was hands-on, his theories scissors-and-paste. In France, the Académie Montmor 
made him patron-saint; in Italy, the Accademia del Cimento lionized his name, which 
appears almost as often as Galileo’s in the Saggi (1666, 1684). In context, Gassendi’s 
contemporary reputation in the Republic of Letters was based on his extensive corre-
spondence network. Today, especially over the last several decades, his reputation has 
enjoyed an historical resurgence, although his published works and correspondence 
remain far less accessible compared to those of French contemporaries, Descartes, 
Pascal, or Mersenne. Given Gassendi’s Baroque Latin, a key concern has been the 
lack of translations and absence of a critical edition of his complete correspond-
ence. Finally, despite a dozen recent monographs on his thought and work, there is 
no modern biography of Gassendi. It is in this context, then, that the appearance of 
the works under review has been much anticipated by scholars seeking to situate 
Gassendi in the mainstream of early modern science. 

The following essay seeks to evaluate and place in historical context the three 
volumes under review: Taussig’s Introduction to Gassendi’s life and her edition 
of the Lettres latines, which consists of the Latin letters in French translation and 
a companion volume of Notes. My second purpose is to sketch the historical cir-
cumstances that gave us Gassendi’s Opera omnia (1658) while leaving hundreds of 
his letters unpublished. A brief overview of Gassendi’s “primal archive” provides 
context for this review and desiderata for a future edition of Gassendi’s Complete 
Correspondence. 



519The Correspondence of Pierre Gassendi

Introduction à la vie savante

Despite his rich historiography, Gassendi remains an enigma. From the outset, biog-
raphers have troubled over the relationship between his public and private beliefs. 
While important biographical insights have been offered about this man of many 
parts — usually involving oppositions such as ancients–moderns, humanism–sci-
ence, reason–faith, scepticism–dogmatism, mechanism–voluntarism — Gassendi, 
by acclaim, was remarkably allusive about his private beliefs, particularly those 
considered dangerous. Longstanding debates, some turning on the distinction between 
public and private, hint at the pivotal role of his personal papers. Unlike published 
works (so the argument goes) Gassendi’s letters open a window on his private views 
about God, mind, freewill, and by natural extension, Copernicanism, atomism, and 
materialism. His letters also serve as a trace in time; they show ideas in flux and 
works in progress. Even Gassendi’s view of atoms was not unswerving. 

Tausig’s Introduction to Gassendi’s life has two apparent drawbacks. First, it is 
not a biography; second, in surveying Gassendi’s scholarly career, it overlooks a vast 
scholarship. Instead of addressing longstanding issues directly or systematically, Taus-
sig chronicles Gassendi’s career by means of thematic summaries based on his Lettres 
latines. Ignoring his early life and education, the Introduction makes few claims to 
understanding “Gassendi the man” or to offering fresh insight into traditional areas 
of conflict. Taussig, however, makes no claim to having written a biography. 

Instead, the Introduction provides an intelligent overview and analysis of Gassen-
di’s career. Carefully keyed to the Lettres latines and arranged into seven chapters, the 
Introduction focuses on the last 34 years of Gassendi’s scholarly life. As described in 
chap. 1, Taussig divides Gassendi’s career into three major periods: 1621–37 (punc-
tuated by two “silent years”), 1639–49, and 1650–55. The logic of the divisions is 
apparently based on Gassendi’s loss of friends; first, the death of Peiresc (1637), and 
second, a series of deaths around 1649, including those of Gaultier (1647), Mersenne 
(1648), Luillier (1651), and Valois (1653). Given this framework, Taussig identifies a 
series of themes: Gassendi’s entrance into the world of learning; the emergence of his 
publication plans; the establishment of his reputation; the expansion of his role in the 
Republic of Letters; and his cultivation of powerful patrons. Although these themes 
highlight Gassendi’s ascent to European celebrity, more attention might have been 
paid to his troublesome legal battles, his consuming health concerns, and the cruel 
behaviour of his old friend, J.-B. Morin. Although the importance of key friendships 
are justly highlighted — Peiresc, Mersenne, Luillier, and Bernier — further focus 
might have been given to Boulliau, Chapelain, and the Brothers Dupuy. It may also 
be time for historians to focus on the personal relationship between Gassendi and 
Peiresc. 

Although his friendships are only partly represented in his correspondence, Gas-
sendi’s letters tell us much about how his interests evolved. In chap. 2, one of the 
strongest chapters, Taussig offers important insight into the art, genre, and function 
of scholarly correspondence and the practical, philosophical, and utopian rules of 
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engagement in the Republic of Letters. Libertinage, freethinking, and censorship are 
important subtexts. Often insightful, Taussig offers a shrewd analysis of early modern 
communication. If something is lacking, it is a clearer sense of the chronological 
scope and geographical distribution of Gassendi’s network, perhaps in relation to those 
of a Mersenne, Descartes, or Boulliau. While Taussig rightly contrasts Mersenne’s 
wide-ranging interests with Gassendi’s more focused agenda, further analysis might 
be offered about the boundaries — geographical, political, and religious — that 
shaped Gassendi’s network. 

Chap. 3 is devoted to Gassendi’s intellectual style in relation to authors ancient 
and modern. Trained in the classics, Taussig analyses Gassendi’s citation patterns and 
thoughtfully calls into question his eclecticism and originality as a thinker. Chap. 4 
draws on scientific themes from the Lettres, some relating to astronomy. These topics 
include Gassendi’s fascination with telescopes, the comet of 1618, the size of the 
universe, and the problem of mathematical idealization. Perhaps most relevant for 
readers of JHA, this chapter is sometimes disappointing, particularly when too little 
context is supplied. Inevitably, errors and omissions appear. For example, Galileo’s 
theory of comets is misconstrued, Gassendi’s reputation-making observations on the 
transit of Mercury are quickly passed over, and he is wrongly credited with conduct-
ing the first falling-ball experiment from the mast of a ship. There is surprisingly 
little discussion of the great clash between Descartes and Gassendi (Monsieur Mind 
v. Monsieur Flesh) in the Objections and replies. More generally, some readers 
might welcome more discussion of Gassendi’s views on Copernicanism, on Kepler’s 
planetary theory, and on his extensive astronomical exchanges with Hevelius and 
Boulliau, which often included data and snippets of dialogue from correspondents 
across Europe. 

If Gassendi had a single passion it was Epicurus. On this topic our hero embodied 
the view that books are never finished, merely abandoned. Predictably, chap. 5 on 
Gassendi and Epicurus is Taussig’s most extensive. Here the Introduction and Lettres 
latines work together to tell the story “behind the book”. Much like an intellectual 
diary, Gassendi’s letters trace the evolution of his mature views while exposing his 
moments of doubt; uncensored, they betray his first inklings and second thoughts. 
An important focal point comes in the form of some 59 letters Gassendi sent to his 
patron, Louis de Valois (October 1641 to November 1642). Structured after his De 
vita et doctrina Epicuri and eventually published as his Syntagma philosophiae 
Epicuri, Gassendi’s letters provide an advanced primer on Epicurean thought and, 
equally important, a working example of Gassendi’s historicist views. Read alongside 
his Lettres, this chapter shows Gassendi’s ideas in gestation, how his concerns with 
scepticism, empiricism, and language worked together where history, philosophy, 
and science converge. 

In chap. 6 Taussig extends the issue of Epicurus to the problem of the prince and 
philosopher, specifically the relationship between Gassendi as pedagogue and Louis 
de Valois as pupil and patron. The epistolary exchange between the two is famously 
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substantial: nearly half (over 800) of Gassendi’s extant letters involve Valois. Despite 
the lopsided representation, Gassendi was not as close to Valois as to others, particu-
larly Peiresc. Taussig suggests that Gassendi valued his independence, and further, that 
he saw Valois (who was neither dim nor unlettered) as a poor pupil. She concludes 
that Gassendi took Valois’s failed political career to heart and, having failed as his 
tutor, later declined Queen Christina’s overtures to join her court. But it seems more 
likely that Gassendi’s final years were shaped by failing health and unmistakable 
pressure, self-imposed, to publish his life’s work. 

In her final chapter Taussig assesses Gassendi’s views on history, on the proper 
use of the past and the appropriate role of the historian. As a form of research and 
mode of expression, history was the “lumière de la vie” for Gassendi. But as he well 
understood, historical writing is writ both large and small. According to Taussig, 
Gassendi distinguished between ‘history’ as philosophical or Baroque and as the 
daily chronicle of local and contemporary events. Living in Paris, Gassendi supplied 
numerous chronicles to Valois who lived in Provence; but Gassendi’s local narratives, 
even of contemporary riots and rebellions, were largely descriptive and devoid of 
personal judgement. By contrast, speaking philosophically, Gassendi showed great 
sympathy for grander themes of war and peace, of heroic drama and Baroque spec-
tacle. Taussig concludes that Gassendi was ambivalent about a linear or cyclic view 
of history. Alas, she offers little discussion of Gassendi’s historicism. 

Finally, on the conviction that scholarly apparatus is important, I address three 
sections that conclude Taussig’s Introduction. For the record, I applaud the revival 
of several old-fashioned scholarly traditions — a timeline of Gassendi’s life (pp. 
287–92) and an appendix of short biographical sketches (pp. 293–412). Although the 
sketches are not without problems, they provide critical information about dozens 
of figures now forgotten. Given the number and esoteric content of the sketches, 
it is no surprise that many are dated, derivative, and not error-free. Some of these 
mistakes could have been eliminated by checking major figures in the DSB or mini-
mized by cross-checking minor figures in the landmark sources.1 The Bibliography 
also presents problems.2 The first section (“Oeuvres de Gassendi”), apart from 
the Opera omnia, is limited to editions in French translation, and thus forfeits the 
opportunity to supply an authoritative list of Gassendi’s original works. The second 
section (“Manuscrits de Gassendi”) is surprisingly incomplete. Rather than attempt 
an updated list of manuscripts outside the Opera, selected items are quoted from 
René Pintard’s published thesis (now over 60 years old), thus continuing old errors 
and omitting hundreds of little-known manuscripts. Finally, Section 3 (“Oeuvres des 
contemporains”) omits books Gassendi is known to have read, including works cited 
in the Lettres themselves.3 Section 6 (“Ouvrages consacrés à Gassendi”) is stronger 
but with obvious omissions and numerous typographical errors.

In sum, the Introduction à la vie savante is a welcome addition to Gassendi studies. 
Despite its self-imposed limitations, it is a useful volume, consistently intelligent, 
and in important ways scholarly in the extreme. Read in concert with the Lettres 
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latines, the Introduction offers a roadmap to the unfolding of Gassendi’s thought 
across a variety of disciplines. Specialists may be hard pressed to identify how this 
volume changes our views of Gassendi; and non-specialists may feel unsteady with 
several interpretations, particularly given the minimalist approach to citation. On 
balance, the Introduction favours Gassendi’s view of ‘history’ as chronicle rather 
than as Baroque.

Lettres latines

Gassendi’s Latin letters (discussed more fully below) first appeared in print three years 
after his death, in vol. vi of his Opera omnia (1658). Pierre Gassendi (1592–1655): 
Lettres latines provides the first modern translation of a large portion of those letters 
(from Gassendi) found in the first half of Opera, vi. To be clear, Taussig’s Lettres 
latines do not include letters sent to Gassendi, which occupy the second half of Opera, 
vi. Taussig’s Lettres latines consists of two volumes — French translations of Gas-
sendi’s letters and commentary. In lieu of letters sent to Gassendi, brief summaries 
appear, as necessary, in the Notes. 

The basic structure of the Lettres latines follows the original organization of 
Opera, vi. In presenting the translations and apparatus, Taussig has in some ways 
treated Opera, vi, as a work of literature whose format should be preserved. In prac-
tice, each letter has been assigned a Letter Number which is then keyed to the page 
and column of Opera, vi; for example, “Lettre no 307, 191a”. A useful convention, 
this practice nevertheless disappears when an unbroken series of letters was sent to 
the same person. With the Valois sequences, for example, letters (“Au même”) are 
assigned a Letter Number but lack the page and column reference (for example, nos. 
201–19, pp. 262–84).4 It should also be noted that Letter Numbers sometimes refer to 
an extract, incipit, or editorial note that indicates a letter is lost. While this practice is 
not unreasonable, some readers may feel the need for more editorial assistance. 

Some editorial suggestions may be in order. Most readers would be well served 
if each translated letter were given a standardized heading. In addition to a Letter 
Number, each heading would include key particulars: sender and city; recipient and 
city; date (as it appears in the letter, whether Old Style, Roman, etc.); and New Style 
date, converted as necessary. Given the complexity of Gassendi’s correspondence, 
the heading might also identify the parent manuscript (whether original, draft, copy, 
or printed version) along with locations (library, fond, folios). While headings of this 
kind might be considered a luxury, they would show that translations are based on 
authoritative texts and that manuscript sources have been identified and compared. 
Other information, usually best known to the editor, might also be included. The loca-
tion of the sender or recipient, not always evident in the translated text, is significant 
and always useful. Dates present similar difficulties. During the seventeenth century 
a variety of competing calendric systems were at work (Julian, Gregorian, Roman, 
Ecclesiastical, Florentine, Pisan), not to mention problems with undated letters, cor-
rected dates, multiple dates, and postscripts. Many of Gassendi’s letters have been 
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silently converted from Roman Style to New Style. Once again, some readers may 
feel the need for more editorial assistance. 

On the other hand, the quality of Taussig’s translations is excellent. She has done 
a masterful job with Gassendi’s infamously difficult Baroque Latin. Correct but con-
voluted, Gassendi’s Latin can make Kepler’s look lithe and lively. A key contribution 
of Taussig’s French translations is that they will make Gassendi more accessible and 
better known, and as these translations are more widely consulted, there will be pleas 
for more. Gassendi’s intellectual talent, never in doubt, was not always perfectly 
expressed; Taussig has skilfully captured his sense with accuracy and grace. While 
these translations are no substitute for the original Latin texts, they represent a fresh 
avenue that surely will be well travelled.

As a trilogy of companion volumes, Taussig’s Introduction and the Lettres latines 
themselves are buttressed by the volume of Notes. Though massive and impressive, the 
Notes are not without problems. Virtually the same length as its companion volume, 
the volume of Notes contains 609 pages and some 7491 endnotes in very small 
type. Traditionally designed for commentary and citation, the Notes are remarkably 
erudite, an essential ingredient in keeping pace with Gassendi. Surprisingly, despite 
notable displays of sophistication, the Notes offer few citations to other scholarly 
works. The undeniable strength of the Notes is the wealth of information they pro-
vide, not only on classical and philological concerns, but on a vast range of issues 
that span political, military, and diplomatic history, as well as science, philosophy, 
theology, history, and law. The Notes sometimes falter, however, when dealing with 
technical issues in the history of science. While some errors of fact might be noted, 
most involve minor misunderstandings, oversights, or limited detail. For example, 
readers would benefit from further elaboration concerning the Moon Illusion, Pois-
son’s Problem (as it extends from optics to vision and “points and parts”), and the 
status of Gassendi’s retinal image (which despite mention of the choroid is passed 
over in silence in notes 1782, 1948 and 3681). Elsewhere, when his De apparente 
(1652, 1658) is addressed, Gassendi’s exchanges with Liceti, Naudé, and Chapelain 
(Aristotelians and literati) are discussed but a fourth letter, by a Keplerian, is omitted 
(note 1831). Readers of JHA may notice that slim mention is given to Gassendi’s 
observations of the transit of Mercury (1631), with no references to guide inquiring 
readers. Boulliau’s planetary theory, detailed in his Astronomia philolaïca (1645), is 
somewhat bungled (note 4342; cf. note 4872), as circular orbits are ascribed to the 
planets (not ellipses) and Mercury is once listed as a superior planet.

Gassendi’s erudition, of course, presents difficulties for any editor. A clear strength 
of Taussig’s Notes, signalled at the beginning of the volume, is an impressive list of 
Abbreviations (Notes, pp. v–x). It is perhaps telling that virtually all refer to classical 
authors. Any balanced review of Taussig’s trilogy must underscore the new knowledge 
we have regarding Gassendi’s classical debts. Punctilious and perceptive, Taussig’s 
Notes demonstrate anew that the New Science was rooted in ancient texts, and that 
natural philosophers and classical scholars were often one and the same. Would that 
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we had similar studies of Copernicus, Kepler, Peiresc, Schickard, Boulliau, Viviani, 
Halley, and Newton! Given her classical strengths, it is no surprise that Taussig’s 
commentary is less steady on issues in science, though there are important historio-
graphic weaknesses as well. A final concern is the absence of an Index. Most readers 
will quickly discover that they have a treasure but no map. A simple solution is to 
make all three volumes available in electronic format. A searchable digital text would 
eliminate the need for an Index and diminish other organizational concerns.

Background: Gassendi’s Opera, vi (1658)

When Gassendi died in 1655, arrangements had already been made to publish his com-
plete works. His last patron, Henri-Louis Habert de Montmor (1600–84, “Montmor 
the Rich”), assured Gassendi that his writings, the work of a lifetime, would be 
put into print, including a substantial portion of his Latin letters. Assisted by Jean 
Chapelain, François Henry, Samuel Sorbière, and Gassendi’s last secretary, Antoine 
de la Poterie, Montmor financed a new edition of Gassendi’s existing publications, 
edited his unpublished manuscripts, and helped prepare Gassendi’s Latin letters for 
publication.5 It is likely that François Bernier was also involved. Once edited, the texts 
were transported to Lyon, and after two years in press they appeared as Gassendi’s 
Opera omnia (6 vols in folio, Laurent Anisson and Jean-Baptiste Devenet, Lyon, 
1658).6 Though he had intended seven volumes, Gassendi understood that many of 
his letters in Latin, and virtually all in French, would be excluded. The fate of these 
letters is discussed below. 

Although Gassendi’s Opera omnia represents a landmark event, it has since become 
an historical artifact. From the outset, the Opera was designed as a show-piece, a 
posthumous celebration of Gassendi’s fame and the munificence of his patrons. 
Written in the universal language of learning, the Latin letters found in Opera, vi, 
were designed to demonstrate the cosmopolitan character of the Republic of Letters, 
a Commonwealth of Learning that defied political and religious boundaries. Few 
contemporaries could claim such a monument.

From a modern scholarly perspective, however, Gassendi’s Opera is utterly out-
dated. Incomplete from the start, Opera, vi, is poorly organized, existing texts are 
marred by editorial errors and misprints, and the absence of an index makes navigation 
all but impossible. Consisting of 545 pages, Opera, vi, contains a total of 1204 letters 
divided into four sections, each arranged chronologically. As discussed above, the first 
section contains 686 letters written by Gassendi which, thanks to Taussig’s efforts, 
are now in French translation. The remainder, containing letters sent to Gassendi, 
has not been translated. The second section includes 6 “exceptional” (re-grouped) 
letters from Queen Christina and her circle, all in French; the third consists of 331 
Latin letters from Valois; and the last section contains 181 Latin letters sent to Gas-
sendi from 67 correspondents.
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Gassendi’s “Primal Archive”

Although Gassendi’s Opera represents a remarkable effort by his friends — and a 
rare moment in scholarly publication — little concerted effort has been made since 
his death to locate his remaining letters. As the leading Gassendi scholar Bernard 
Rochot noted, the “bulk of his [Gassendi’s] extensive correspondence in French and 
Latin is far from entirely known”.7 

The search for Gassendi’s letters begins with what we know. Gassendi’s “primal 
archive” is a useful way to imagine what we want to know, namely, the totality of let-
ters — originals, drafts, copies, and printed letters — that Gassendi sent or received. 
Patterns of exchange make it clear that many of those letters are lost, but equally 
important, that Gassendi’s correspondence was far more extensive than currently 
believed. In reconstructing Gassendi’s primal archive, I have identified some 1744 
extant letters.8 By any measure, this number is unexpectedly large, easily surpassing 
the respective tallies for Descartes, Pascal, Hobbes, Flamsteed, Newton, and even 
Marin Mersenne, the “Mailbox of Europe”. The following overview of Gassendi’s 
correspondence supplies historical context for his Lettres latines and a crude outline 
of what is needed for a future edition of Gassendi’s Complete Correspondence. 

Taussig’s Lettres latines, as discussed above, are based on the first half of Opera, 
vi; in turn, Opera, vi, is based on Gassendi’s autograph drafts at the Bibliothèque 
Nationale, Paris, NaL 2643.9 This manuscript volume was originally entitled “Pierre 
Gassendi. Epistulae”. As with other collections of the period, NaL 2643 is poorly 
organized and its content confused. In addition to competing pagination and folia-
tion, repeated number sequences, broken chronologies, and a rash of cancellations 
and emendations, the content of NaL 2643 does not match Opera, vi. Careful com-
parison of the two volumes shows that each contains both more and less than the 
other. Most disturbing, numerous missing manuscripts have not been located, and 
while a careful survey of nineteenth-century sale catalogues has proven useful, it 
has not proved heartening.10 Readers of either volume are not without assistance. In 
Opera, vi, omissions are usually identified with a brief editorial notice, extract, or 
incipit. Similarly, readers of NaL 2643 will find a smattering of annotations (dark 
black ink) that help link some parent manuscripts to printed versions in the Opera. 
Overall, Opera, vi, includes about a dozen letters not found in NaL 2643, while the 
manuscript volume contains an important set of French copies of Gassendi’s letters 
to Luillier in 1632–33.11

The parent manuscript letters for the second half of Opera, vi, (letters sent to 
Gassendi) are also found in Paris. The bulk of the Latin letters sent to Gassendi 
(Opera, vi, 391–545) are found in NaL 1637 and most are originals. The letters in 
French sent to Gassendi by Queen Christina and by her circle (Opera, vi, 335–7) are 
found near the beginning of NaL 1637 and NaL 1638. The original letters of Valois 
to Gassendi (Opera, vi, 338–90), conserved and bound separately, are found in NaL 
1638. Two related volumes, NaL 1635 and NaL 1636, contain important Gassendi 
manuscripts. The above volumes represent the parent manuscripts for most Latin 
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letters published in Opera, vi.
Gassendi wrote a large number of letters in French. Although many are presumed 

lost, the best-known among the extant letters have been published. In addition to the 
Luillier letters noted above, the largest single group of French letters was exchanged 
with N.-C. Fabri de Peiresc, Gassendi’s closest friend and first patron. Published by 
Tamizey de Larroque, the exchange consists of some 160 letters that are included as 
part of vol. iv of the Lettres de Peiresc.12 Unfortunately, the selection is incomplete 
and the editing is shoddy.13 Most of the parent manuscripts are found at the BN Paris 
in two key volumes: f.fr. 9536 contains letters from Gassendi to Peiresc14 and f.fr. 
12772 contains originals from Peiresc to Gassendi.15 A Peiresc manuscript suggests 
that many letters in this exchange are lost.16 Seldom cited, f.fr. 12270 contains some 
of Gassendi’s earliest correspondence in French, as well as important exchanges with 
family members during his last years.17 In addition, a handful of Gassendi letters in 
French, mostly administrative and some personal, can be found at Digne.

Gassendi’s “primal archive” likely contained more letters in French than Latin. 
Many have yet to be located and are presumed lost. Of the numerous exchanges in 
French, as one example, some 40 letters of Gassendi and Boulliau remain largely 
unpublished. This particular exchange also suggests a general pattern; although many 
of Gassendi’s letters have been preserved, fewer responses are extant. Similar pat-
terns appear in Gassendi’s other French exchanges, while dozens of Latin letters have 
yet to be identified and published, among them important exchanges with Hevelius. 
More generally, many of Gassendi’s originals, sent out across Europe, have yet to be 
located, and equally disheartening, even letters from the illustrious cannot be found, 
including Galileo originals. They may have become meat wrap.18

Important questions remain about Gassendi’s correspondence. What is not 
known is how Gassendi’s letters were dispersed immediately after his death, how 
the publication of Opera, vi, may have contributed to the loss of letters, and how 
his manuscripts were scattered in subsequent centuries.19 What we do know is that 
Gassendi merits further study. To that end, what we need are adequate charts and 
abscissae, a map of Gassendi’s primal archive, and an authoritative edition of his 
Complete Correspondence.20

To conclude, thanks are clearly due to Taussig for introducing Gassendi to a new 
generation of interdisciplinary scholars. While her introduction to Gassendi’s life 
is largely descriptive, it does provide a useful and intelligent guide to Gassendi’s 
Lettres latines, and importantly, it opens new avenues of research. In the end, while 
Gassendi specialists will continue to base their claims on the Latin texts themselves, 
Taussig’s French translation will doubtless direct new traffic to new topics. Drawn 
by the drama of Gassendi’s private correspondence — often more telling than his 
published works — a new generation will give new meaning to the manuscripts of 
a dusty past.

University of Florida ROBERT ALAN HATCH
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TYCHO AND HIS CORRESPONDENCE

Bearing the Heavens: Tycho Brahe and the Astronomical Community of the Late 
Sixteenth Century. Adam Mosley (Cambridge University Press, New York, 2007). 
Pp. xiv + 354. $99. ISBN 978-0-521-83866-5.

This book examines scientific communication during the early modern period, and 
focuses, in particular, on the correspondence of the Danish astronomer Tycho Brahe. 
Tycho has not received as much attention as others such as Galileo or Kepler; and 
most of the letters he exchanged with numerous learned people of his time have yet 
to be fully investigated. One feature of this book is to exploit this material to bring 
to the fore the daily life of the astronomer, the circulation of astronomical ideas 
and instruments, and the practices of the learned men of that period. Adam Mosley 
contributes to Tychonian studies through the epistolary corpus about which he shows 
a very deep knowledge.

Correspondence was an important component of the early modern period. The 
letters that circulated among different astronomers contained in-depth analyses 



529The Correspondence of Pierre Gassendi

which could shape or reshape theories and strategies of observation. In addition, 
these astronomers had practical problems to face, such as the transport of packages 
to their correspondents, and the burden of social etiquette to respect. 

Mosley especially examines a selection of the Epistolae astronomicae, published in 
1596, exchanged between Tycho and Christopher Rothmann, the official mathemati-
cian of the Landgrave of Hesse. Thanks to a very accurate analysis of the humanistic 
letter (divided into five parts: salutatio, captatio benevolentiae, narratio, petitio 
and conclusio), he tries to conjure up the social network in which the scholars were 
involved, the issues and the theories they debated, their relations with their patrons, as 
well as their disputes and conflicts. Mosley taps the wealth of information contained 
in this correspondence, which thus enables him to embrace the history of science 
simultaneously on several fronts. 

Because the Astronomical letters were published in 1596, the question of the 
printing press and its meaning is raised. Tycho set up his own printing press about 
1585; as a result, he has often been regarded as a hero of both the scientific and the 
printing revolutions. The point here is not, however, to assert once again the impact 
of the printed book on the emergence of astronomy, but rather to correct the exag-
geration of the use of printing on the image of the astronomer. Mosley contends 
that by printing his letters, Tycho did not seek commercial profit; rather, he sought 
to reach a greater number of readers. To that end, the astronomer managed to enter 
the book trade networks in order to have his correspondence delivered or to get the 
relevant equipment for his presses. Tycho’s printed Letters relate moreover to the 
Ursus affair. The imperial astronomer had been accused by Tycho of plagiarism. In 
this particular conflict, publishing the Letters was a good means for Tycho to become 
regarded as the father of the geo-heliocentric world system. Mosley also discusses 
the didactic role of the Letters, showing that Tycho intended his Letters to become 
a reference work for astronomy students. 

In the last part of his book, Mosley presents the symbolism of astronomical instru-
ments, and how they were produced and put into circulation. He does not limit his 
research to treatises such as the Mechanica, but delves into the scientists’ correspond-
ence for it provides more information on the instruments — their number, where they 
were located in Hven, and their exchanges between the other astronomical centres. 
The principal subject of the last part deals with the communication of knowledge, 
data and theories through the transfer of instruments. Adam Mosley’s book recalls the 
works of Collins or Shapin and Schaffer on the transfer of technology. To illustrate his 
study, the author refers to very practical examples, such as the Blaeu cartographers, 
who were involved in the construction of the Tychonic astronomical globe.

Mosley thus proposes to consider the history of communication as a significant 
part of the history of science, in that it encompasses the transmission and evolution 
of techniques, as well as the sharing of data and ideas. Bearing the heavens provides 
a new perspective on the Danish astronomer and is definitely worth the reading.

Université de Paris X GÉRALD PÉOUX
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THE INVENTION OF THE TELESCOPE

Galileo’s Glassworks: The Telescope and the Mirror. Eileen Reeves (Harvard Univer-
sity Press, Cambridge, MA, 2008). Pp. 240. $21.95. ISBN 978-0-674-02667-4.

News that a Dutchman had made an optical device that magnified distant objects 
reached Venice in November 1608. Galileo began the experiments that resulted in his 
version of the telescope in the early summer of 1609, when, he said, he first heard 
(or received useful information) about the Dutch invention. By the end of the year 
he had completed his observations of the Moon and early in 1610 he discovered the 
satellites of Jupiter. The splendour of this discovery and its time value in the patron-
age game recommended prompt publication; Sidereus nuncius, in which Galileo 
described the motions of the satellites and gave them, as the “Medicean stars”, to 
the Grand Duke of Tuscany, appeared in March.

Eileen Reeves, professor of comparative literature at Princeton, asks why ten 
months elapsed between the arrival of the initial report in Venice and Galileo’s first 
experiments with telescopic lens combinations. The answer, according to Reeves, is 
that Galileo and his friend Paolo Sarpi, who heard the first reports bruited in Venice, 
dismissed them as natural-magical boasts.

The great interest of Reeves’s book lies in her reconstruction of the natural magic 
in question, which made use of a combination of a concave mirror as objective 
and a concave lens as eyepiece. According to a story as enduring as the legend of 
Archimedes and the Roman fleet, a device incorporating a mirror enabled observers 
at the Pharos of Alexandria to spy on actions taking place hundreds of miles away. 
The story, which Reeves retraces in detail, helped natural magicians of later periods 
to believe (or pretend to believe) that with mirrors sufficiently large and true they 
could duplicate the feats of the voyeurs of Alexandria.

Reeves credits reports of some telescopic effects that the natural magicians claimed 
to have achieved using undisclosed arrangements of mirrors. The argument of Gali-
leo’s glassworks, however, requires that Galileo and Sarpi reject these claims. For it 
was just their doubts about standard stories of magnification that, Reeves says, caused 
them to dismiss the Dutch telescope until informed that it did not employ mirrors.

In February 1609, before his energetic engagement with the Dutch device, 
Galileo hinted at a cupboard full of great inventions in the making. Although this 
inventory, which he drew up in natural-magical style to support his negotiations for 
a position at the Medici court, does not mention catoptrics, Reeves gives reasons to 
suppose that Galileo had some optical magic up his sleeve, indeed, a Pharos device 
of mirror and lens. (Does this conclusion not undercut the argument that suspicion 
of such devices delayed Galileo’s engagement with the Dutch telescope?) Reeves 
supports her guess with another: Galileo had written a dedication giving the Medicis 
the myriad of stars visible through the telescope in the constellation Orion before 
he discovered the better present of the satellites of Jupiter. Techniques of literary 
criticism allow her to identify the ghosts of this premature effort in the definitive 



531Book Reviews

dedication of Sidereus nuncius.
The ghosts haunt the familiar rhetoric in which Galileo itemized the ways people 

memorialize heroes. Working upward from the most transient, Galileo mentions mar-
bles, bronzes, statues, columns, pyramids, and cities named for those most worthy of 
everlasting commemoration. All these decay eventually. More enduring, sometimes, 
are written records, which, however, also perish. The most certain and secure vehicle 
of everlasting glory is a star — a planet for a Saturn or Venus, a constellation for a 
Perseus or Hercules. Fortunately for Cosimo, Providence had caused his would-be 
courtier to discover new planets for the Medici. Reeves interprets Galileo’s recital 
of monumental genres from marbles to stars as veiled hints at ancient optical magic. 
For to what could the columns and pyramids, the city named for a great hero, and the 
destruction of books refer but Alexandria? And is it not clear that Galileo’s explana-
tion of the need for monuments — “such is the condition of the human mind that 
unless continuously struck by images of things rushing to it from the outside, all 
memories easily escape from it” — points to a device like the camera obscura and, 
by association, to Alexandria, to the Pharos?1 

Among those who manipulated Pharos devices effectively were Jesuits and devils. 
Reeves gives examples of Jesuits. I can supply a devil. The commentary on the 
Evangelists by the very learned Spanish theologian Benito Arias Montano includes 
an elucidation of the temptation of Christ as recorded in Luke iv:5. We read, “And 
the Devil, taking him up into a high mountain, showed unto him all the kingdoms 
of the world in a moment of time.” How the devil, asks Arias Montano, who was 
something of a natural magician, did the Devil do it? How did he manage to show 
Christ all the earth at once? “Hoc potuit effici prospectivae sive opticae artis vi, quam 
diabolus non ignorat; ut eadem arte à nobis conficiuntur inspicilla, quae longissimè 
distantes res oculis exactissimè subiicunt.”2

This text dates from 1575. It was written in the Spanish Netherlands, where 
Arias Montano supervised the printing of the famous polyglot bible subsidized by 
his master King Philip II of Spain. Should we suppose a Dutch telescope before the 
Dutch telescope? A Pharos device? Some not-so-natural magic? At a minimum, Arias 
Montano’s commentary suggests that a belief in effective telescopic devices existed 
before 1600 among the extensive and widespread readership of books published by 
the Plantin press, and that historians of early modern science should spend more 
time with their bibles.

University of California, Berkeley/Worcester College, Oxford J. L. HEILBRON
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ASTRONOMY AS A MODEL?

Astronomy as a Model for the Sciences in Early Modern Times. Edited by Menso 
Folkerts and Andreas Kühne (Algorismus 59; Dr. Erwin Rauner Verlag, Augsburg, 
2006). Pp. xviii + 498. €27.50. ISBN 978-3-936905-22-9.

This admirable volume comprises marginally revised versions of twenty-nine papers 
that were first presented in March 2003 at a symposium held at one of the leading 
European centres for the history of science, that at the Ludwig-Maximilians-Univer-
sität in Munich. The title of the symposium, originally phrased in German, ended in 
a question mark that the editors of the volume have dropped with some optimism. 
While not all of the contributors addressed the question directly, some of those who 
did so have shown how one might begin to demonstrate that astronomy was indeed 
a model for the sciences. More specifically, speakers were asked to consider the 
situation only after Regiomontanus. Since his death was just three years after the 
birth of Copernicus, those who want to follow the well-worn — but still not fully 
explored — historical path leading up to the early modern period had plenty of scope. 
An interesting aspect of recent research along that path has been the attention paid 
to individual schools and scholars previously regarded as somewhat off the beaten 
track. Fridericus Amann (d. 1465), the subject of Armin Gerl’s paper, is one of several 
individuals about whom we learn much that is new, and the kind of things Amann 
did — in calculation and instrumentation — were certainly productive of a sound 
scientific mentality. There are very many other instances in the volume about which 
this could be said, and there would be no point in trying to list them all in a review, 
but it must be said that very few authors attempted to show systematically how the 
imputed influence came about, or could have come about, or failed to come about, 
or what precise form it took that gave it its value.

One could never say that Prague was off the beaten track, but Alena Hadravová 
and Petr Hadrava throw much interesting new light on what was going on there, and 
short as is their paper, they — like Gerl and a few others — remind us of the exist-
ence of the Middle Ages, and of the occasional need to break out of the historical 
compartments decreed by symposium organisers. Their passing mention of Tycho’s 
planned expedition to Alexandria connects nicely with the introductory chapter by 
Sonja Brentjes, on early modern encounters across the Mediterranean Sea. She has 
numerous examples of the rather random movements of scientific ideas, as Catholic 
and Protestant, Ottoman and Safavid, and scholars of many other persuasions, jostled 
each other in their various searches. But searches for what? They were searching for 
so many different things that the bearing of her many fascinating examples on the 
theme of the symposium is again not easy to spot, and she confesses at the end of 
her extremely enjoyable paper that “astronomy appears to have functioned rather as 
a guide for orientation in cultural and social spaces than as a guide for acquiring pure 
knowledge”. She is speaking, of course, only of her own dramatis personae. 

The search for influence of the kind being sought comes closer to success with 
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the several papers touching on the mathematics of astronomy, but there we rarely 
find authors prepared to go further than setting out mathematical details — perhaps 
because they were thought interesting enough in themselves. Mieczysław Markowski 
takes a bolder line, in a short but thoughtful paper presenting astronomy and astrol-
ogy in pre-Copernican [sic] Cracow as a Leitwissenschaft for advances in a wider 
scholarly world. Michael Segre is likewise unafraid to mention the part played by 
astrology, citing Michael Polanyi’s dictum that science could not avoid tradition, 
with all its irrational baggage. That idea, I imagine, was not in the minds of the 
symposium organisers when they phrased their question, but several other contribu-
tors show the importance of astrology to it. Richard Kremer does so in a thorough 
way, by focusing closely on the relevance of annual practica — by Achilles Pirmin 
Gasser and Joachim Heller — to the spread of Copernicanism. An important subtext 
to his chapter is the question of an increasing acknowledgement of the importance 
of accurate calculation. Another line of influence with a bearing on the symposium 
theme is that which was effected through what Owen Gingerich calls “the invisible 
astronomical network” after 1543. He has in mind, of course, an analogy with what 
Robert Boyle referred to as an Invisible College of natural philosophy, and presents 
the case for an astronomical network primarily through the medium of his study of 
the fortunes of Copernicus’s De revolutionibus, the subject of his two well-known 
books on the subject. 

Theory was not the only inheritor of the Renaissance astronomical tradition. 
Instrumentation during that period made great leaps forward in the West, and several 
authors touch hesitantly on the ways in which other physical sciences benefitted as a 
result — through telescopic optics, for example (Sven Dupré), and through the work 
of those whom E. G. R. Taylor called “mathematical practitioners”, with their influ-
ence on navigation, geodetics, and cartography. Fernand Hallyn treats the last subject 
obliquely, through its repercussions on humanism, Uta Lindgren more directly, by 
looking at geodetic instruments. Yaakov Zik pursues a relatively original and inter-
esting line, closer to the purpose of the volume, analysing Kepler’s discussion of the 
problems instrumental observers faced, and proposing ways in which instruments in 
general could be refined in principle.

Since the book is arranged more or less chronologically, it is to be expected that the 
influences that are sought will be more conspicuous towards the end. Robert Hatch, 
for instance, is able to discuss Newton’s inverse-square law and its roots in optics 
and astronomy, drawing on the writings of such astronomers as Kepler, Borelli, and 
Bouillau. Andreas Verdun takes things a stage further, considering the development 
of many of the methods of the modern exact sciences in the astronomical writings of 
Leonhard Euler. We are so used to hearing that the astronomically inspired Newtonian 
model — one that finally replaced a kinematical with a dynamical astronomy — was 
of supreme importance, after his time, for the mathematical modelling of the physical 
sciences more generally, that it is refreshing to come across a change of emphasis, 
placing the vital turning point in eighteenth-century mechanics and astronomy. 
There are many ways of deciding this question, however. Verdun argues his case by 
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focusing on the complexity and richness of Euler’s many new physical concepts, and 
on his analytical and notational advances, many of them still highly conspicuous in 
modern science. Those whose feathers are ruffled by what they might interpret as an 
attempt to play off one period of history against another might well reply along the 
lines that the acorn is not inferior to the oak. Verdun’s essay, in short, will not please 
everyone, but I would have given him first prize for keeping the initial symposium 
question uppermost in his thoughts. The book is well worth buying, however, even 
for the contributions of those who did not.

Oxford JOHN D. NORTH

HARMONIA MACROCOSMICA REPRINTED

Andreas Cellarius, Harmonia Macrocosmica of 1660: The Finest Atlas of the Heav-
ens. Introduction and texts by Robert H. van Gent (Taschen, Cologne, 2006). Pp. 
240. $150. ISBN 978-3-8228-5290-3.

What is Andreas Cellarius’s Harmonia macrocosmica seu Atlas universalis et novus, 
published by Johannes Janssonius in 1660 and reprinted in 1661? The subtitle of 
Robert van Gent’s stately volume, The finest atlas of the heavens, implies a two-
fold answer to this question. On the one hand, the Harmonia macrocosmica can be 
thought of as a book about astronomy, even if it fails to incorporate some of the most 
important developments of seventeenth-century astronomy (which Cellarius may have 
intended to consider in a subsequent book). Because of this, the work might well have 
been forgotten as time went by, despite Ernst Zinner’s contention that it had had an 
important impact on the diffusion of Copernicanism. On the other hand, the Harmo-
nia macrocosmica is splendidly illustrated and contains twenty-nine double-sided 
plates showing the Ptolemaic, Tychonic and Copernican world systems and maps of 
the heavens, which reflect the history and development of astronomy. Together with 
the frontispiece, these exquisite images, which in many copies were hand-coloured, 
turned the volume into a prestigious object to be displayed in parlours to impress 
visitors. Indeed, ever since their original publication in 1660, the illustrations in 
the Harmonia macrocosmica have been so popular that they have been frequently 
reprinted without the text. This kept Cellarius’s name alive, and prompted Taschen, 
a company that specializes in producing lavishly illustrated coffee-table books, to 
publish the huge volume under review. 

Measuring 32 × 53cm, Taschen’s edition is larger than the original folio and has 
considerable physical weight. Like the earlier reprints, it contains facsimiles of the 
Harmonia macrocosmica’s frontispiece and plates, but does not include reproduc-
tions of the text. Robert van Gent’s commentary begins with a short introduction, 
which covers the history of celestial atlases, celestial globes and world systems from 
Antiquity to Cellarius’s times, and includes a brief description of the Harmonia macro-
cosmica and its printing history. This is followed by a discussion of the frontispiece 
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and the plates, including their astronomical and iconographical content. The book 
presents three appendices: an overview and summarized history of the constellations 
depicted in the plates, the names of the stars, and a glossary of astronomical terms. 
The edition concludes with a short biography of Cellarius, about whom not much 
is known, and a fragmentary bibliography. All the texts appear in English, French 
and German.

This is an attractive edition, but historians of astronomy were not necessarily in 
desperate need of it since many copies of Cellarius’s work are available, including 
an online-version (www.lib.utah.edu/digital/splash.php?CISOROOT=/Cellarius). But 
Robert van Gent has done a very good job of making Cellarius’s work accessible to 
a more general public, and the merits of this should not be underestimated.

Johannes Gutenberg Universität Mainz VOLKER R. REMMERT

EPICYCLES AND ECCENTRICS IN THE MIDDLE AGES

Studies in Medieval Astronomy and Optics. José Luis Mancha (Variorum Collected 
Studies Series, C852; Ashgate, Aldershot, 2006). Pp. xxii + 338. $120. ISBN 
978-0-86078-996-3.

This volume assembles the substantial publications of the historian of astronomy and 
optics José Luis Mancha. As the author explains in the preface, each article in the 
volume is connected, often via the work of al-Bitruji (fl. 1200) and Gersonides (d. 
1344), to medieval astronomers’ rejection of epicycles and eccentrics (p. vii).

According to quotations from Aristotle’s Metaphysics and Simplicius’s commen-
tary on Aristotle’s De caelo, the first astronomer to devise models of homocentric 
orbs, without epicycles and eccentrics, to account for available celestial observations 
was Eudoxus (fl. c. 370 B.C.). In the eleventh century, Ibn al-Haytham (d. c. 1040) 
proposed what appeared to be a Eudoxan couple of two orbs, one enclosing the 
other, as part of a mechanism to cause the planets’ motion in latitude.1 The absence 
of any real cause for the motion in latitude had been a lacuna of Ptolemy’s Almag-
est. Mancha, in “Ibn al-Haytham’s homocentric epicycles”, concluded that Ibn 
al-Haytham’s work might be the source for the homocentric models in A treatise 
concerning the refutation of the eccentrics and the epicycles by Henry of Hesse (d. 
1387) and in Julmann’s Tractatus de reprobationibus epiciclorum et eccentricorum 
(composed 1377) (VIII, p. 73).

Eudoxan ideas continued to surface in medieval astronomy. B. R. Goldstein’s 
scholarship on al-Bitruji (fl. c. 1200) found that al-Bitruji’s models were essentially 
Ptolemaic models placed on the surface of a sphere, and depended on Ibn al-Zarq_llu 
and other writers on trepidation. But the article entitled “Al-Bitruji’s theory of the 
motions of the fixed stars”, argued that al-Bitruji’s model for the motion of the fixed 
stars was in fact Eudoxan, as E. S. Kennedy had first suggested (XI, pp. 143–4).

Mancha’s “Right ascensions and hippopedes: Homocentric models in Levi ben 
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Gerson’s Astronomy” shows that the Astronomy of Gersonides (d. 1344) included a 
detailed description (and rejection) of Eudoxan homocentric models to explain the 
motions of the planets in longitude and anomaly (VII, pp. 264–5). This text, in part, 
was available in Latin during Gersonides’s lifetime, well before the late fifteenth- and 
sixteenth-century homocentric astronomies of Regiomontanus, Amico, and Fracastoro. 
Given F. J. Ragep’s observation2 that an astronomer as early as Ibrahim Ibn Sinan (d. 
946) was aware of Eudoxan models, one might ask why al-Bitruji, if his model for the 
motion of the fixed stars was Eudoxan, took a different approach in his homocentric 
models for the planets’ motions. In light of recent scholarship3 proposing new under-
standings of how Eudoxus could have been understood, Mancha’s work tells us how 
pre-modern astronomers actually understood Eudoxan theories. Homocentric models 
in toto could be seen as part of a broad tradition of criticism of Ptolemy.

 “The Latin translation of Levi ben Gerson’s Astronomy” found, by examining 
variations between the Latin text and the Hebrew, that Gersonides worked with the 
Latin translator of the Astronomy, Petrus of Alexandria, on a translation from a Prov-
ençal intermediary that Gersonides had already produced (III, pp. 13–14). Mancha 
dated the Latin translation to the last few years of Gersonides’s life (IV, pp. 15–18) 
and wrote more about Gersonides’s relationship with Christian scholars in “Levi ben 
Gerson’s astronomical work”. Another article, “The Provençal version of Levi ben 
Gerson’s Tables for Eclipses”, showed how the Provençal version, being earlier than 
the extant Hebrew version of the tables, lends insight into Gersonides’s intellectual 
biography (VI, pp. 269–73).

Because Gersonides chose to use epicycles and eccentrics, his determination of 
the parameters and dimensions from observations involved multiple observations 
and successive approximations. “Approximation procedures in Levi Ben Gerson’s 
astronomy” focused on Gersonides’s own analysis of heuristic reasoning as he deter-
mined, for example, the dimensions and parameters of the model for Saturn (V, pp. 
22–30). Gersonides knew that he had the correct answer only when his observations 
verified his theoretical starting point. This article is intriguing because Gersonides 
was aware of how he had to rely on inductions from experience for information that, 
in a homocentric cosmos, could be more easily demonstrated (V, pp. 15–16). 

Gersonides’s development of an instrument, the Jacob’s Staff, with a pinhole aper-
ture, led Mancha to investigate work on pinhole images in two texts that preceded 
Gersonides’s Astronomy. “Egidius of Basiu’s theory of pinhole images” treats the 
production of circular images via angular apertures; “Astronomical use of pinhole 
images in William of Saint-Cloud’s Almanach planetarum” considers a use of pinhole 
images to measure the solar diameter. 

Finally, a laudable characteristic of Mancha’s work is the presence of passages, 
with translations and analysis, from primary sources. Even a reader who questioned 
Mancha’s conclusions would still be able to learn and develop new interpretations 
from these articles.

Bowdoin College  ROBERT MORRISON
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COSMOLOGY DOWN THE AGES

Conceptions of Cosmos, From Myths to the Accelerating Universe: A History of 
Cosmology. Helge S. Kragh (Oxford University Press, Oxford, 2006). Pp. 276. 
£35. ISBN 978-0-19-920916-3.

Here is a very workmanlike review of ideas about the cosmos from Antiquity to the 
present. The publishers state that “It presents cosmology as a subject including sci-
entific as well as non-scientific dimensions, and tells the story of how it developed 
into a true science of the heavens. Contrary to most other books in the history of 
cosmology, it offers an integrated account of the development with emphasis on the 
modern Einsteinian and post-Einsteinian period”. 

The first half of the book is devoted to the pre-relativistic epoch, starting with 
myths and creation stories of ancient Egypt and Mesopotamia and ending with the 
Copernican revolution, Newtonian ideas about cosmology, and the beginnings of an 
understanding of the true scale of the universe. The second half covers the epoch of 
relativistic cosmology from Einstein to the present, including the inflationary universe 
idea and the recent discoveries of dark matter and the acceleration of the universe. 
Kragh maps the transition from cosmological myth to evidence-based science and 
physical explanation, and concludes with more philosophical speculation. It is very 
useful to have collected in one place such a synoptic overview of cosmological 
theories, as it is easy for today’s cosmologists to be ignorant of the larger context of 
thought in which their work takes place.

The very recent epoch is necessarily covered in rather sketchy fashion, with a 
variety of alternatives presented but in a rather non-critical style; for example vari-
able speed-of-light cosmologies and cyclic universes are both problematic, and this 
is not well reflected in the text. Nevertheless Kragh offers sufficient material for 
those interested to be aware in broad-brush outline of many of the main cosmological 
proposals being made at present. Some significant ideas are however omitted, for 
example the Randall-Sundrum brane-world notion and the loop quantum cosmology 
programme of Bojowald and others. 

Three things are of particular interest in this survey. First, some old themes recur 
through the ages. Did the universe have a beginning? If so what was there before 
(insofar as that question has a meaning)? Is the universe infinite in space? Will it have 
an end? Are there one or many worlds? These have been topics of speculation and 
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dogmatic statement for thousands of years. And we still don’t know the answers. 
Second, huge progress, with various new themes coming into play, has been essen-

tially enabled by advances in experimental and observational technology. The devel-
opment of observational testing together with physical theories led to the discovery, 
successively, of the size of the observable universe, its expansion, simple models of 
the physical evolution of the universe as a whole, the way gravity leads to develop-
ment of astrophysical structures, the way nuclear physics leads to a theory of element 
formation, and the way particle physics provides clues to the evolution of the early 
universe. All this is an impressive and coherent, evidence-based development. 

A third theme is how resistance to many of these changes, even from scientists, 
held back understandings. For example, the idea of a static universe delayed under-
standing of the expanding universe for a decade. And the prediction of the existence 
of blackbody cosmic background radiation (as a result of examination of the ther-
modynamics and element formation in the early universe) was essentially ignored 
for fifteen years.

What is perhaps not made so clear in the book is the way that we are now again 
entering an era of cosmological myth, but this time of scientific rather than religious 
mode. By myth, I mean an explanatory story or theory that gives a means of under-
standing what happens but remains hypothetical rather than proven. It is not uniquely 
supported by empirical evidence; indeed, it may not be supported by any evidence at 
all. The multiverse idea is one major current example, another is the statement that 
physical infinities really exist in the physical universe, and yet others are various 
theories of creation of the universe ‘out of nothing’. The first two are unprovable, and 
the third rely on as yet unclarified ontological assumptions about where or how the 
massive machinery of quantum field theory that underlies these explanations exists 
in some form pre-existent to the origin of the universe. That supposed pre-existence 
is not in any way testable. The overview presented in this book helps put these myths 
into proper historical and philosophical perspectives, which may be useful for their 
future development.

University of Cape Town GEORGE ELLIS

ISLAMIC INFLUENCE ON COPERNICUS

Islamic Science and the Making of the European Renaissance. George Saliba (MIT 
Press, Cambridge, MA, 2007). Pp. xii + 315. $40. ISBN 978-0-262-19557-7.

Much attention is currently being given to the achievements and influence of medi-
eval Islamic science. This book presents two major arguments. The first (original 
to the author) concerns the motivations for the ninth-century translation movement 
during which Greek science was rendered into Arabic. The second (building upon 
the work of earlier modern scholars such as E. S. Kennedy, Otto Neugebauer, and 
Noel Swerdlow) presents a case for the influence of thirteenth- to fifteenth-century 



539Book Reviews

Islamic astronomers on Copernicus. 
A remarkable program of translation occurred in Baghdad during the ninth century 

during which nearly all of the major scientific and medical Greek writings were ren-
dered into Arabic, including the Almagest of Ptolemy. Not only were such treatises 
translated but immediately the data in the texts were modified. For example, the 
value ascribed to the precession of the equinoxes was corrected from Ptolemy’s 1° 
per 100 years to 1° per 66 years or 1° per 70 years. The motion of the solar apogee 
(considered fixed by Ptolemy at 5;30° Gemini) was found to have moved eleven 
degrees by the early ninth century. For observation of the solar apogee, a new tech-
nique unknown to the Greeks was devised: observation of the daily declination of 
the Sun at the midpoints of the seasons. The value of the inclination of the Earth’s 
axis was recalculated from 23;51,20°, as given in the Almagest, to either 23;33° 
or 23;35° depending upon which authority you read. These revisions — not just 
translations — were already reflected in tables compiled in Baghdad for the caliph 
al-Ma’mun (reg. 813–33).

Saliba argues here that this very early activity of refining the values given in the 
Greek texts clearly indicates that science, in this case astronomy, was already fairly 
mature at the time the translations from the Greek were made. He contends that mere 
translators of entirely new material would not know how to go about verifying the 
data and procedures, much less be able to develop new techniques for use in critically 
checking them. And indeed virtually all of the early translators into Arabic were also 
scholars of considerable originality in their own right.

Saliba then intriguingly suggests that the impetus for the translation movement 
came from members of the government bureau of revenue (diwan), who were already 
skilled in arithmetical and geometrical procedures (particularly surveying) and meth-
ods of computing solar years, but who needed to expand their skills and knowledge so 
as to maintain their dominance in the bureaucracy. He persuasively argues that fields 
of knowledge had in this instance become “tools of political power” (p. 77).

The second major argument of the volume gives rise to the title Islamic science 
and the making of the European Renaissance. In essence Saliba argues that: (1) prior 
to Nicolaus Copernicus (d. 1543) there was no tradition in Europe of criticizing and 
changing the mathematical models employed in Ptolemaic astronomy; (2) there 
was, however, a continuous and vigorous tradition in the Islamic world of doing 
just that; (3) Copernicus employed geometrical and diagrammatic techniques that 
appear identical to those originated by late medieval Islamic astronomers; and (4) 
therefore Copernicus must have had access to these Arabic works even though there 
is no evidence available today that they were translated into Latin.

There is no doubt that a number of medieval Islamic astronomers refined the math-
ematical models employed in the astronomy of the day, and many were adamant in 
their rejection of some geometric techniques (equants, deferents, eccentrics) employed 
by Ptolemy to account for varying angular speeds and latitudes of planetary orbits. 
Their objection to these geometric devices (which Saliba repeatedly calls “absurdi-
ties”) was that they lacked consistency and violated the Aristotelian principle of 
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uniform circular motion. The criticism of Ptolemy’s geometry and the invention of 
new mathematical techniques employing combinations of circles each with uniform 
circular motion is particularly evident in the work of Nasir al-Din al-Tusi (d. 1274) 
and his colleague at the Maragha observatory in northwest Iran, Mu’ayyad al-Din 
al-‛Urdi (d. 1266) as well as Ibn al-Shatir (d. 1375), a time-keeper at the Umayyad 
Mosque in Damascus, ‛Ali al-Qushji (d. 1474) working at the Samarqand observa-
tory, and Shams al-Din al-Khafri (d. 1550). 

Ultimately, according to Saliba, there was so much questioning of the underlying 
mathematical principles in Ptolemaic astronomy that a foundational shift became 
evident in thirteenth- to fifteenth-century Arabic writings, with the “new astronomy” 
(as Saliba has termed it) rejecting many of the principles of Ptolemaic astronomy. 
Saliba’s “new astronomy”, however, should not be confused with the heliocentric 
astronomy of Copernicus and his supporters, which earlier historians often have 
termed “the new astronomy”.

Regarding the influence upon Copernicus of the work of these Islamic astronomers, 
it should be kept in mind that none of them proposed the paradigm shift of placing 
the Sun at the centre rather than the Earth. Although critical of the failure to maintain 
uniform circular motion in the modelling, Islamic astronomers made no criticisms of 
the basic Ptolemaic geocentric scheme; they could, in fact, be viewed as being very 
conservative in their approach in that they wished to return to complete compliance 
with the Aristotelian view of perfection in the circle. 

There was, however, undoubtedly a long, creative, and continuous tradition of 
Islamic theoretical astronomy. It is unclear how much this activity was driven by 
discrepancies between observed data and the predictive ability of models, and how 
much by the intellectual need to maintain circular motions and a desire for an agree-
able mathematical model. As for the hypothesis that there was a causal link between 
the activities of the later Islamic astronomers and the development of Copernican 
astronomy, it remains only a hypothesis until the mechanism for such borrowing 
can be found. Yet the evidence is mounting for some form of connection, especially 
given the sudden appearance in Europe of technical geometric innovations that had 
a centuries-long tradition in Islam.

The volume is unfortunately flawed by tiresome repetitions and numerous spelling 
errors (examples of the latter being “Liones” instead of “Leonis”, p. 80; “equinoxial” 
and “solsticial” for “equinoctial” and “solstitial”, p. 82; “lied” instead of “lay”, pp. 
111 and 120). The volume would have profited from careful and judicious editing. 
Throughout it is evident that Professor Saliba has an agenda, which is to reveal the 
importance of late medieval Islamic astronomers to the development of European 
astronomy. In making his case, however, he has felt the need on occasion to overstate 
certain points, an example being the statement (p. 112): “By the beginning of the 
sixteenth century, no self-respecting astronomer would have continued to uphold 
the long-discarded and obsolete astronomy of Ptolemy.” As always happens in such 
instances, these exaggerations tend to detract from a argument well worth considera-
tion. A more dispassionate examination of the issues can be found in a recent study 
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by F. J. Ragep in which he draws attention to the potentially revolutionary suggestion 
(overlooked by Saliba) made by the fifteenth-century astronomer ‛Ali al-Qushji that 
there was no need for astronomers to adhere to Aristotelian physics and uniform 
circular motion (“Copernicus and his Islamic predecessor: Some historical remarks”, 
History of science, xlv (2007), 65–81).

One of the great values of this volume is that it argues, convincingly and passion-
ately, that scientists and scholars in the Muslim world remained creative, original, 
and productive well into the sixteenth century, often at times when Europe was 
intellectually quiescent. Those of us who work in the history of Islamic science and 
medicine have long been aware of this fact, but many remain convinced that Muslim 
scholars did little after the twelfth century, even asserting that what these scholars 
did do was merely to pass on to Europe the earlier Greek science. This book should 
surely lay that myth to rest at last.

University of Oxford EMILIE SAVAGE-SMITH

CALENDRICS IN THE ANCIENT NEAR EAST

Calendars and Years: Astronomy and Time in the Ancient Near East. Edited by John M. 
Steele (Oxbow Books, Oxford, 2007). Pp. 176. £25. ISBN 978-1-84217-302-2.

In 1975, Otto Neugebauer remarked that “historical chronology rests on an interplay 
of theoretical astronomy and historical conditions, far more intricate than profes-
sional historians usually realize — to the great detriment of their insight into the 
very foundations of their field”.1 The papers in this volume, originally presented 
at the 2005 Notre Dame workshop and edited by John M. Steele, address many of 
the intricacies of ancient Near Eastern (Mesopotamian and Egyptian) calendrics, 
attesting to the fact that the conversion of ancient to modern dates (e.g., ITI.AB 24 
MU 13 IDariamuš = 24th Tebetu year 13 Darius II = 12/13 Jan. 410 B.C.) rests not 
only on the establishment of a workable correlation of various ancient calendars 
with our own but also on an understanding of the many aspects of chronography 
that underpin them. 

Two papers concern Egyptian calendrics. Sarah Symons analyses the diagonally 
arranged decan tables found on the inside of coffin lids from the IXth to the XIIth 
Dynasties and on the Abydos ceiling of the XIXth Dynasty Osireion, and adds to this 
corpus eight additional sources beyond the thirteen included in Neugebauer’s and 
Parker’s EAT, vol. i. She offers a new reconstruction of the list of decans and their 
order as well as a new typology (T and K Tables), and discusses the 365-day Egyptian 
civil year that underlies the tables. She rejects the old term ‘diagonal star clock’ on 
the grounds that the decan tables do not tell time at night but indicate parts of the 
night (called “hours”) by means of stellar appearances, which, with the passage of 
years, do not represent actual situations as they require periodic and regular revision 
to be practicable. L. Depuydt seeks to clarify the foundations of the modern model 
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for Egyptian chronology based on the consistent use of the ‘wandering’ (with respect 
to the seasons and the rising of Sirius/Sothis [Spdt]) 365-day calendar and provides 
a broad sweep of the historiography of the 365-day year from ancient Egyptian 
evidence of civil months (in Djoser’s Step Pyramid) to Ideler’s nineteenth-century 
work on ancient chronological systems.

The section on Mesopotamia consists of four papers of broad scope, dealing with 
calendrical systems attested in cuneiform sources from the Archaic period to the 
Seleucid Babylonia. Lis Brack-Bernsen shows that both cultic and civil calendars 
(where cultic events take place in relation to special days in the lunar cycle) and an 
administrative calendar (where each month had 30 days, not based on lunar phases, 
but which facilitated calculations and bookkeeping) were in existence from the earli-
est of historical times (Early Dynastic III, c. 2600–2300 B.C.), with evidence for the 
administrative calendar and its artificial year of 360 days going back as far as the 
Protoliterate period (3200 B.C.). Following Ur III times (c. 2000 B.C. onward) the 
lunisolar calendar is in evidence for dating documents, with the need for intercala-
tion every three years on average (regularized by adoption of the 19-year cycle in 
the late Persian period). In addition, she argues that the old administrative calendar, 
based on 360 days, was continued as an ideal calendar used in astronomical schemes 
and calculation.

W. Horowitz focuses on the Babylonian “astrolabe” texts that divide each of twelve 
months into three parts defined by the rising of certain stars (and a few planets) in 
different parts of the sky (“roads” of the gods Anu, Enlil, and Ea), creating thereby 
a system of thirty-six stars to define the months of a schematic year. He discusses 
the textual development of the astrolabe tradition, beginning in the Kassite period 
and continuing into the first millennium, with exemplars from Neo-Assyrian and 
Late Babylonian periods. He argues for an internal relation between the “Astrolabe 
B” tradition and the Babylonian Creation Poem Enuma Eliš, both of which were 
composed c. 1100 B.C., and sees theological reasons for this intertextual relation 
relating to the exaltation of Marduk.

John P. Britton’s centrepiece summary of the history of Mesopotamian calendars, 
intercalation practices and year-lengths brings together heretofore scattered materi-
als (especially in the particularly welcome section on year-lengths). He sees the 
administrative calendar referred to by Brack-Bernsen as a bridge between civil and 
schematic calendars, a convenient accounting convention more than a calendar as it 
did not reckon time in the sense we normally attribute to that word. The historical 
development he traces of the intercalary schemes that end in the adoption of the 19-
year lunisolar period relation 19 years = 235 months will probably be the last word 
on this issue for some time.

John Steele takes up the centrally important question of month length in the 
Babylonian calendar, which he tracks from the Neo-Assyrian through to the Parthian 
Periods. His research shows the consistent use of a calendar in Mesopotamia over 
the course of its 3000-year history which used the true lunar month (experienced as 
either 29 or 30 days), defined by and aligned with the lunar phases. By the seventh 



543Book Reviews

century B.C. attempts were being made to predict the new moon day but textual 
evidence shows this was not successful until the Neo-Babylonian period. By the 
last 300 years B.C., month lengths were being predicted a year in advance and a 
centralized control of the calendar from major cultic centres (Babylon and Uruk) 
to outlying areas seems indicated. The centralized calendrical function of these late 
period temple organizations may explain why astronomical archives are found in 
precisely these centres.2

A. Jones offers the sole contribution on Greek calendrics. He discusses calendars 
associated with Greek astronomers for which there are intercalary cycles, the Callip-
pic cycle (76 years) being the only one that served as the basis for a calendar and this 
only in astronomical contexts. Other “astronomer’s calendars” include the Egyptian 
and the strictly solar Dionysian (for a brief interval during the third century B.C.). 
Jones explores antecedents of the astronomical calendars, i.e., dating by astronomi-
cal phenomena, in pre-Greco-Roman non-astronomical contexts, viz., Hesiod, Book 
4 of the Epidemics in the Hippocratic corpus, the Peripatetics and parapegmatists 
(Euctemon and Geminus). He then discusses evidence for the use of the zodiacal 
(twelve-sign) calendar, first associated with parapegmata from the end of the fourth 
century (possibly introduced by Callippus, Jones suggests). In the context of the 
parapegmata, which relate stellar phases to weather, the zodiacal division of the 
year is not strictly speaking a working calendar for generating dates but an ideal 
framework for organizing seasonal fixed-star phases with other data, such as weather 
or the length of daylight. The only true zodiacal calendar, Jones notes, is that of the 
astronomer Dionysius, preserved in the Almagest, a calendar soon dropped in favour 
of the Callippic and the Egyptian calendars in later astronomical work.

With this collection of papers, Steele has assembled an essential foundation for 
the further study of calendariography and chronography in the ancient Near East 
and Egypt. Specialists and readers interested in ancient calendars alike will profit 
from this fine publication.

University of California, Berkeley FRANCESCA ROCHBERG
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Anubio, Carmen astrologicum elegaicum. Edited by Dirk Obbink (Bibliotheca Teub-
neriana; K. G. Saur Verlag, Munich and Leipzig, 2006). Pp. x + 79. €58. ISBN 
978-3-598-71228-9.

The editio princeps of a Greek astrological poem, only partially extant in papyrus 
fragments and briefly mentioned by several later authors. The extremely obscure 
Anoubion wrote the elegiac poem probably in the first century A.D., probably in 
Egyptian Thebes. Firmicus Maternus’s widely known fourth-century astrological 
handbook, the Mathesis, appears to borrow heavily from Anoubion’s text.

The Oxford Guide to the History of Physics and Astronomy. Edited by J. L. Heilbron 
(Oxford University Press, New York, 2005). Pp. xxii + 358. $42.95. ISBN 978-
0-19-517198-3.

A compilation of concise articles for general readers, selected from the far larger 
(941 pp.) Oxford companion to the history of modern science (2002) prepared by the 
same editor. Although it treats physics more extensively than astronomy, this guide
offers entries on topics such as the anthropic principle, ether, space and time, celestial 
mechanics, pulsars and quasars, and telescope, plus some fifteen biographical entries 
on the best-known astronomers since Copernicus. A detailed index greatly enhances 
use of the alphabetically arranged guide.

Introducción a la Astronomía y la Geografía. Jerónimo Muños, ed. by Victor Navarro 
(Consell Valencià de Cultura, Valencia, 2004). Pp. 354. ISBN 84-482-3709-9.

Jerónimo Muños (c. 1520–92) taught Hebrew and a wide range of mathematical 
subjects, first at Valencia and then at Salamanca. He published three works, including 
Libro del nuevo cometa (1573) on the nova of 1572, which he recognized as celestial, 
and left others in manuscript. This sumptuous volume, embellished with many colour 
illustrations, presents a transcription of the manuscript Latin text of Astrologicarum 
et geographicarum institutionum libri sex, together with a translation into Spanish.

Lights and Shadows in Cultural Astronomy: Proceedings of the SEAC 2005, Isili, 
Sardinia 28 June to 3 July. Edited by Mauro Peppino Zedda and Juan Antonio 
Belmonte (Associazione Archeofila Sarda, Via Dante 76, Isili 08033, Sardinia, 
2007). Pp. 374. ISBN 978-88-901078-2-5.

The triennial meetings of the European Society for Astronomy in Culture (SEAC) 
go from strength to strength. This latest volume of proceedings contains some 
forty papers, ranging over many topics, given at Isili in 2005. The keynote paper 
by Stanisław Iwaniszewski explores the sources of some of the misunderstandings 
produced by science-based and humanities-based archaeoastronomies.
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